Esempio n. 1
0
    def init_state(self, iterative):
        # Basic properties needed for the restart
        self.default_state = [
            AttributeStateItem('counter'),
            AttributeStateItem('time'),
            PosStateItem(),
            AttributeStateItem('vel'),
            CellStateItem(),
            AttributeStateItem('econs'),
            ConsErrStateItem('ekin_m'),
            ConsErrStateItem('ekin_s'),
            ConsErrStateItem('econs_m'),
            ConsErrStateItem('econs_s')
        ]

        # Dump the timestep
        rgrp = self.f.create_group('restart')
        rgrp.create_dataset('timestep', data=iterative.timestep)

        # Verify whether there are any deterministic thermostats / barostats, and add them if present
        thermo = None
        baro = None

        for hook in iterative.hooks:
            if hook.kind == 'deterministic':
                if hook.method == 'thermostat': thermo = hook
                elif hook.method == 'barostat': baro = hook
            elif hook.name == 'TBCombination':
                if hook.thermostat.kind == 'deterministic':
                    thermo = hook.thermostat
                if hook.barostat.kind == 'deterministic': baro = hook.barostat

        if thermo is not None:
            self.dump_restart(thermo)
            if thermo.name == 'NHC':
                self.default_state.append(NHCAttributeStateItem('pos'))
                self.default_state.append(NHCAttributeStateItem('vel'))
        if baro is not None:
            self.dump_restart(baro)
            if baro.name == 'MTTK':
                self.default_state.append(MTKAttributeStateItem('vel_press'))
                if baro.baro_thermo is not None:
                    self.default_state.append(
                        MTKAttributeStateItem('chain_pos'))
                    self.default_state.append(
                        MTKAttributeStateItem('chain_vel'))

        # Finalize the restart state items
        self.state_list = [
            state_item.copy() for state_item in self.default_state
        ]
        self.state = dict((item.key, item) for item in self.state_list)
Esempio n. 2
0
File: opt.py Progetto: boegel/yaff
class BaseOptimizer(Iterative):
    default_state = [
        AttributeStateItem('counter'),
        AttributeStateItem('epot'),
        PosStateItem(),
        DipoleStateItem(),
        VolumeStateItem(),
        CellStateItem(),
        EPotContribStateItem(),
    ]
    log_name = 'XXOPT'

    def __init__(self, dof, state=None, hooks=None, counter0=0):
        """
           **Arguments:**

           dof
                A specification of the degrees of freedom. The convergence
                criteria are also part of this argument. This must be a DOF
                instance.

           **Optional arguments:**

           state
                A list with state items. State items are simple objects
                that take or derive a property from the current state of the
                iterative algorithm.

           hooks
                A function (or a list of functions) that is called after every
                iterative.

           counter0
                The counter value associated with the initial state.
        """
        self.dof = dof
        Iterative.__init__(self, dof.ff, state, hooks, counter0)

    def _add_default_hooks(self):
        if not any(isinstance(hook, OptScreenLog) for hook in self.hooks):
            self.hooks.append(OptScreenLog())

    def fun(self, x, do_gradient=False):
        if do_gradient:
            self.epot, gx = self.dof.fun(x, True)
            return self.epot, gx
        else:
            self.epot = self.dof.fun(x, False)
            return self.epot

    def initialize(self):
        # The first call to check_convergence will never flag convergence, but
        # it is need to keep track of some convergence criteria.
        self.dof.check_convergence()
        Iterative.initialize(self)

    def propagate(self):
        self.dof.check_convergence()
        Iterative.propagate(self)
        return self.dof.converged

    def finalize(self):
        if log.do_medium:
            self.dof.log()
            log.hline()
Esempio n. 3
0
class VerletIntegrator(Iterative):
    default_state = [
        AttributeStateItem('counter'),
        AttributeStateItem('time'),
        AttributeStateItem('epot'),
        PosStateItem(),
        AttributeStateItem('vel'),
        AttributeStateItem('rmsd_delta'),
        AttributeStateItem('rmsd_gpos'),
        AttributeStateItem('ekin'),
        TemperatureStateItem(),
        AttributeStateItem('etot'),
        AttributeStateItem('econs'),
        AttributeStateItem('cons_err'),
        AttributeStateItem('ptens'),
        AttributeStateItem('vtens'),
        AttributeStateItem('press'),
        DipoleStateItem(),
        DipoleVelStateItem(),
        VolumeStateItem(),
        CellStateItem(),
        EPotContribStateItem(),
    ]

    log_name = 'VERLET'

    def __init__(self,
                 ff,
                 timestep=None,
                 state=None,
                 hooks=None,
                 vel0=None,
                 temp0=300,
                 scalevel0=True,
                 time0=None,
                 ndof=None,
                 counter0=None,
                 restart_h5=None):
        """
            **Arguments:**

            ff
                A ForceField instance

            **Optional arguments:**

            timestep
                The integration time step (in atomic units)

            state
                A list with state items. State items are simple objects
                that take or derive a property from the current state of the
                iterative algorithm.

            hooks
                A function (or a list of functions) that is called after every
                iterative.

            vel0
                An array with initial velocities. If not given, random
                velocities are sampled from the Maxwell-Boltzmann distribution
                corresponding to the optional arguments temp0 and scalevel0

            temp0
                The (initial) temperature for the random initial velocities

            scalevel0
                If True (the default), the random velocities are rescaled such
                that the instantaneous temperature coincides with temp0.

            time0
                The time associated with the initial state.

            ndof
                When given, this option overrides the number of degrees of
                freedom determined from internal heuristics. When ndof is not
                given, its default value depends on the thermostat used. In most
                cases it is 3*natom, except for the NHC thermostat where the
                number if internal degrees of freedom is counted. The ndof
                attribute is used to derive the temperature from the kinetic
                energy.

            counter0
                The counter value associated with the initial state.

            restart_h5
                HDF5 object containing the restart information
        """
        # Assign init arguments
        if timestep is None and restart_h5 is None:
            raise AssertionError('No Verlet timestep is found')
        self.ndof = ndof
        self.hooks = hooks
        self.restart_h5 = restart_h5

        # Retrieve the necessary properties if restarting. Restart objects
        # are overwritten by optional arguments in VerletIntegrator
        if self.restart_h5 is None:
            # set None variables to default value
            if time0 is None: time0 = 0.0
            if counter0 is None: counter0 = 0
            self.pos = ff.system.pos.copy()
            self.rvecs = ff.system.cell.rvecs.copy()
            self.timestep = timestep
            self.time = time0
        else:
            # Arguments associated with the unit cell and positions are always retrieved
            tgrp = self.restart_h5['trajectory']
            self.pos = tgrp['pos'][-1, :, :]
            ff.update_pos(self.pos)
            if 'cell' in tgrp:
                self.rvecs = tgrp['cell'][-1, :, :]
                ff.update_rvecs(self.rvecs)
            else:
                self.rvecs = None
            # Arguments which can be provided in the VerletIntegrator object are only
            # taken from the restart file if not provided explicitly
            if time0 is None:
                self.time = tgrp['time'][-1]
            else:
                self.time = time0
            if counter0 is None:
                counter0 = tgrp['counter'][-1]
            if vel0 is None:
                vel0 = tgrp['vel'][-1, :, :]
            if timestep is None:
                self.timestep = self.restart_h5['/restart/timestep'][()]
            self._restart_add_hooks(self.restart_h5, ff)

        # Verify the hooks: combine thermostat and barostat if present
        self._verify_hooks()

        # The integrator needs masses. If not available, take default values.
        if ff.system.masses is None:
            ff.system.set_standard_masses()
        self.masses = ff.system.masses

        # Set random initial velocities if needed.
        if vel0 is None:
            self.vel = get_random_vel(temp0, scalevel0, self.masses)
        else:
            self.vel = vel0.copy()

        # Working arrays
        self.gpos = np.zeros(self.pos.shape, float)
        self.delta = np.zeros(self.pos.shape, float)
        self.vtens = np.zeros((3, 3), float)

        # Tracks quality of the conserved quantity
        self._cons_err_tracker = ConsErrTracker(restart_h5)
        Iterative.__init__(self, ff, state, self.hooks, counter0)

    def _add_default_hooks(self):
        if not any(isinstance(hook, VerletScreenLog) for hook in self.hooks):
            self.hooks.append(VerletScreenLog())

    def _verify_hooks(self):
        with log.section('ENSEM'):
            thermo = None
            index_thermo = 0
            baro = None
            index_baro = 0

            # Look for the presence of a thermostat and/or barostat
            if hasattr(self.hooks, '__len__'):
                for index, hook in enumerate(self.hooks):
                    if hook.method == 'thermostat':
                        thermo = hook
                        index_thermo = index
                    elif hook.method == 'barostat':
                        baro = hook
                        index_baro = index
            elif self.hooks is not None:
                if self.hooks.method == 'thermostat':
                    thermo = self.hooks
                elif self.hooks.method == 'barostat':
                    baro = self.hooks

            # If both are present, delete them and generate TBCombination element
            if thermo is not None and baro is not None:
                from yaff.sampling.npt import TBCombination
                if log.do_warning:
                    log.warn(
                        'Both thermostat and barostat are present separately and will be merged'
                    )
                del self.hooks[max(index_thermo, index_thermo)]
                del self.hooks[min(index_thermo, index_baro)]
                self.hooks.append(TBCombination(thermo, baro))

            if hasattr(self.hooks, '__len__'):
                for hook in self.hooks:
                    if hook.name == 'TBCombination':
                        thermo = hook.thermostat
                        baro = hook.barostat
            elif self.hooks is not None:
                if self.hooks.name == 'TBCombination':
                    thermo = self.hooks.thermostat
                    baro = self.hooks.barostat

            if log.do_warning:
                if thermo is not None:
                    log('Temperature coupling achieved through ' +
                        str(thermo.name) + ' thermostat')
                if baro is not None:
                    log('Pressure coupling achieved through ' +
                        str(baro.name) + ' barostat')

    def _restart_add_hooks(self, restart_h5, ff):
        from yaff.sampling.nvt import BerendsenThermostat, NHCThermostat
        from yaff.sampling.npt import TBCombination, BerendsenBarostat, MTKBarostat
        # First, make sure that no thermostat / barostat hooks are supplied in the hooks argument.
        # If this is the case, they are NOT overwritten.
        thermo = None
        baro = None
        baro_thermo = None
        for hook in self.hooks:
            if hook.method == 'thermostat': thermo = hook
            elif hook.method == 'barostat': baro = hook
            elif hook.name == 'TBCombination':
                thermo = hook.thermostat
                baro = hook.barostat

        if thermo is None or baro is None:  # not all hooks are already provided
            rgrp = restart_h5['/restart']
            tgrp = restart_h5['/trajectory']

            # verify if NHC thermostat is present
            if thermo is None and 'thermo_name' in rgrp:
                # collect thermostat properties and create thermostat
                thermo_name = rgrp['thermo_name'][()]
                timecon = rgrp['thermo_timecon'][()]
                temp = rgrp['thermo_temp'][()]
                if thermo_name == 'Berendsen':
                    thermo = BerendsenThermostat(temp,
                                                 timecon=timecon,
                                                 restart=True)
                if thermo_name == 'NHC':
                    pos0 = tgrp['thermo_pos'][-1, :]
                    vel0 = tgrp['thermo_vel'][-1, :]
                    thermo = NHCThermostat(temp,
                                           timecon=timecon,
                                           chainlength=len(pos0),
                                           chain_pos0=pos0,
                                           chain_vel0=vel0,
                                           restart=True)

            # verify if barostat is present
            if baro is None and 'baro_name' in rgrp:
                baro_name = rgrp['baro_name'][()]
                # if MTTK barostat, verify if barostat thermostat is present
                if baro_name == 'MTTK' and 'baro_chain_timecon' in rgrp:
                    # collect barostat thermostat properties
                    timecon = rgrp['baro_chain_timecon'][()]
                    temp = rgrp['baro_chain_temp'][()]
                    pos0 = tgrp['baro_chain_pos'][-1, :]
                    vel0 = tgrp['baro_chain_vel'][-1, :]
                    # create thermostat instance
                    baro_thermo = NHCThermostat(temp,
                                                timecon=timecon,
                                                chainlength=len(pos0),
                                                chain_pos0=pos0,
                                                chain_vel0=vel0,
                                                restart=True)
                # collect barostat properties and create barostat
                timecon = rgrp['baro_timecon'][()]
                temp = rgrp['baro_temp'][()]
                press = rgrp['baro_press'][()]
                anisotropic = rgrp['baro_anisotropic'][()]
                vol_constraint = rgrp['vol_constraint'][()]
                if baro_name == 'Berendsen':
                    beta = rgrp['beta'][()]
                    baro = BerendsenBarostat(ff,
                                             temp,
                                             press,
                                             timecon=timecon,
                                             beta=beta,
                                             anisotropic=anisotropic,
                                             vol_constraint=vol_constraint)
                elif baro_name == 'MTTK':
                    if anisotropic:
                        vel0 = tgrp['baro_vel_press'][-1, :, :]
                    else:
                        vel0 = tgrp['baro_vel_press'][-1]
                    baro = MTKBarostat(ff,
                                       temp,
                                       press,
                                       timecon=timecon,
                                       anisotropic=anisotropic,
                                       vol_constraint=vol_constraint,
                                       baro_thermo=baro_thermo,
                                       vel_press0=vel0,
                                       restart=True)

        # append the necessary hooks
        if thermo is not None and baro is not None:
            self.hooks.append(TBCombination(thermo, baro))
        elif thermo is not None:
            self.hooks.append(thermo)
        elif baro is not None:
            self.hooks.append(baro)

    def initialize(self):
        # Standard initialization of Verlet algorithm
        self.gpos[:] = 0.0
        self.ff.update_pos(self.pos)
        self.epot = self.ff.compute(self.gpos)
        self.acc = -self.gpos / self.masses.reshape(-1, 1)
        self.posoud = self.pos.copy()

        # Allow for specialized initializations by the Verlet hooks.
        self.call_verlet_hooks('init')

        # Configure the number of degrees of freedom if needed
        if self.ndof is None:
            self.ndof = self.pos.size

        # Common post-processing of the initialization
        self.compute_properties(self.restart_h5)
        Iterative.initialize(self)  # Includes calls to conventional hooks

    def propagate(self):
        # Allow specialized hooks to modify the state before the regular verlet
        # step.
        self.call_verlet_hooks('pre')

        # Regular verlet step
        self.acc = -self.gpos / self.masses.reshape(-1, 1)
        self.vel += 0.5 * self.acc * self.timestep
        self.pos += self.timestep * self.vel
        self.ff.update_pos(self.pos)
        self.gpos[:] = 0.0
        self.vtens[:] = 0.0
        self.epot = self.ff.compute(self.gpos, self.vtens)
        self.acc = -self.gpos / self.masses.reshape(-1, 1)
        self.vel += 0.5 * self.acc * self.timestep
        self.ekin = self._compute_ekin()

        # Allow specialized verlet hooks to modify the state after the step
        self.call_verlet_hooks('post')

        # Calculate the total position change
        self.posnieuw = self.pos.copy()
        self.delta[:] = self.posnieuw - self.posoud
        self.posoud[:] = self.posnieuw

        # Common post-processing of a single step
        self.time += self.timestep
        self.compute_properties()
        Iterative.propagate(self)  # Includes call to conventional hooks

    def _compute_ekin(self):
        '''Auxiliary routine to compute the kinetic energy

           This is used internally and often also by the Verlet hooks.
        '''
        return 0.5 * (self.vel**2 * self.masses.reshape(-1, 1)).sum()

    def compute_properties(self, restart_h5=None):
        self.rmsd_gpos = np.sqrt((self.gpos**2).mean())
        self.rmsd_delta = np.sqrt((self.delta**2).mean())
        self.ekin = self._compute_ekin()
        self.temp = self.ekin / self.ndof * 2.0 / boltzmann
        self.etot = self.ekin + self.epot
        self.econs = self.etot
        for hook in self.hooks:
            if isinstance(hook, VerletHook):
                self.econs += hook.econs_correction
        if restart_h5 is not None:
            self.econs = restart_h5['trajectory/econs'][-1]
        else:
            self._cons_err_tracker.update(self.ekin, self.econs)
        self.cons_err = self._cons_err_tracker.get()
        if self.ff.system.cell.nvec > 0:
            self.ptens = (np.dot(self.vel.T * self.masses, self.vel) -
                          self.vtens) / self.ff.system.cell.volume
            self.press = np.trace(self.ptens) / 3

    def finalize(self):
        if log.do_medium:
            log.hline()

    def call_verlet_hooks(self, kind):
        from yaff.sampling.npt import BerendsenBarostat, TBCombination
        # In this call, the state items are not updated. The pre and post calls
        # of the verlet hooks can rely on the specific implementation of the
        # VerletIntegrator and need not to rely on the generic state item
        # interface.
        with timer.section('%s special hooks' % self.log_name):
            for hook in self.hooks:
                if isinstance(hook, VerletHook) and hook.expects_call(
                        self.counter):
                    if kind == 'init':
                        hook.init(self)
                    elif kind == 'pre':
                        hook.pre(self)
                    elif kind == 'post':
                        hook.post(self)
                    else:
                        raise NotImplementedError
Esempio n. 4
0
class RefTrajectory(Iterative):
    default_state = [
        AttributeStateItem('counter'),
        AttributeStateItem('epot'),
        PosStateItem(),
        DipoleStateItem(),
        VolumeStateItem(),
        CellStateItem(),
        EPotContribStateItem(),
    ]

    log_name = 'TRAJEC'

    def __init__(self, ff, fn_traj, state=None, hooks=None, counter0=0):
        """
           **Arguments:**

           ff
                A ForceField instance

           fn_traj

                A hdf5 file name containing the trajectory


           **Optional arguments:**

           state
                A list with state items. State items are simple objects
                that take or derive a property from the current state of the
                iterative algorithm.

           hooks
                A function (or a list of functions) that is called after every
                iterative.

           counter0
                The counter value associated with the initial state.
        """
        self.traj = h5.File(fn_traj, 'r')
        self.nframes = len(self.traj['trajectory/pos'][:])
        Iterative.__init__(self, ff, state, hooks, counter0)

    def _add_default_hooks(self):
        if not any(isinstance(hook, TrajScreenLog) for hook in self.hooks):
            self.hooks.append(TrajScreenLog())

    def initialize(self):
        return

    def propagate(self):
        self.ff.update_pos(self.traj['trajectory/pos'][self.counter])
        self.ff.update_rvecs(self.traj['trajectory/cell'][self.counter])
        self.epot = self.ff.compute(None, None)
        self.call_hooks()
        self.counter += 1
        return self.counter == self.nframes

    def finalize(self):
        self.traj.close()
        if log.do_medium:
            log.hline()