Esempio n. 1
0
    def __init__(
        self,
        population_size: int,
        generations: int,
        solution_size: int,
        crossover: Callable[[IndividualStructure[Tuple[int, ...], int]],
                            MultipleIndividualOperatorProtocol[Tuple[int,
                                                                     ...]], ],
        selector: Selector,
        crossover_probability: float,
        mutation_probability: float,
        lower_bound: int,
        upper_bound: int,
        elite_size: int = 0,
    ):
        individual_structure = UniformIndividualStructure(
            tuple(
                IntGene(lower_bound=lower_bound, upper_bound=upper_bound)
                for _ in range(solution_size)))

        super().__init__(
            population_size,
            generations,
            individual_structure=individual_structure,
            elite_size=elite_size,
        )
        self.add_operator_instance(crossover(individual_structure),
                                   crossover_probability)
        self.add_operator_instance(MutationOperator(individual_structure),
                                   mutation_probability)
        self.selector(selector)
def test_initialization_with_tuple():
    gene_1 = CharGene()
    gene_2 = IntGene(lower_bound=1, upper_bound=1)
    individual = MixedIndividualStructure((gene_1, gene_2))
    assert len(individual) == 2
    built = individual.build()
    assert type(built[0]) == str
    assert type(built[1]) == int
    assert individual[0] == gene_1
    assert individual[1] == gene_2
def test_one_point_crossover(crossover_point):
    individual_structure = UniformIndividualStructure(
        tuple(IntGene(lower_bound=0, upper_bound=10) for _ in range(10))
    )
    ind1 = individual_structure.build()
    ind2 = individual_structure.build()
    operator = OnePointCrossoverOperator(individual_structure)
    expect(operator).crossover_point.once().and_return(crossover_point)
    child = operator(ind1, [ind2])
    assert child[0:crossover_point] == ind1[0:crossover_point]
    assert child[crossover_point:] == ind2[crossover_point:]
Esempio n. 4
0
def default_evolutionary_algorithm(
        default_score_function) -> EvolutionaryAlgorithm:
    return EvolutionaryAlgorithm(
        population_size=10,
        generations=10,
        selector=Tournament(selection_size=2, tournament_size=10),
        ranker=Ranker(default_score_function),
        individual_structure=UniformIndividualStructure(
            tuple(IntGene(lower_bound=0, upper_bound=10) for _ in range(10))),
        multiple_individual_operators=[],
        single_individual_operators=[],
    )
Esempio n. 5
0
def test_iteration_regenerates_right_sized_population():
    eva = EvolutionaryAlgorithm(
        ranker=Ranker(lambda x: 1.0),
        selector=Random(selection_size=1),
        population_size=5,
        generations=1,
        individual_structure=UniformIndividualStructure(
            IntGene(lower_bound=0, upper_bound=1)),
        multiple_individual_operators=[],
        single_individual_operators=[],
    )
    eva.run()
    assert len(eva._population) == 5
Esempio n. 6
0
def test_mutation_generates_right_number_of_mutations(genes_to_mutate):
    individual_structure = UniformIndividualStructure(
        tuple(IntGene(lower_bound=0, upper_bound=5) for _ in range(5))
    )
    ind = individual_structure.build()
    for gene_definition in individual_structure:
        allow(gene_definition).generate.once().and_return(6)
    mutation_operator = MutationOperator(
        individual_structure, genes_to_mutate=genes_to_mutate
    )
    mutated = mutation_operator(ind)
    assert ind != mutated
    assert sum(int(i == 6) for i in mutated) == min(genes_to_mutate, 5)
    assert sum(int(i == j) for i, j in zip(ind, mutated)) == 5 - min(genes_to_mutate, 5)
Esempio n. 7
0
def test_iteration_calls_selector():
    selector = Random(selection_size=1)
    eva = EvolutionaryAlgorithm(
        ranker=Ranker(lambda x: 1.0),
        selector=selector,
        population_size=1,
        generations=1,
        individual_structure=UniformIndividualStructure(
            IntGene(lower_bound=0, upper_bound=1)),
        multiple_individual_operators=[],
        single_individual_operators=[],
    )
    expect(selector).__call__.once().and_return([(1, )])
    eva.run()
    assert eva._population[0] == (1, )
def test_progressive_initialization():
    gene_1 = CharGene()
    gene_2 = IntGene(lower_bound=1, upper_bound=1)
    individual = MixedIndividualStructure(gene_1)
    assert len(individual) == 1
    built = individual.build()
    assert len(built) == 1
    assert type(built[0]) == str
    individual_2 = individual.add_gene(gene_2)
    assert len(individual_2) == 2
    assert individual_2[0] == gene_1
    assert individual_2[1] == gene_2
    built2 = individual_2.build()
    assert len(built2) == 2
    assert type(built2[0]) == str
    assert type(built2[1]) == int
Esempio n. 9
0
def find_mixed_individual():
    individual_structure = (MixedIndividualStructure(
        FloatGene(lower_bound=0, upper_bound=1)).add_gene(
            FloatGene(lower_bound=0, upper_bound=1)).add_gene(
                IntGene(lower_bound=0, upper_bound=129)).add_gene(
                    CharGene()).add_gene(CharGene()))
    eva = (EvolutionaryAlgorithmBuilder(
        population_size=200,
        generations=2000,
        elite_size=10,
        individual_structure=individual_structure,
    ).selector(Tournament(tournament_size=3, selection_size=50)).add_operator(
        MutationOperator, 0.01).add_operator(OnePointCrossoverOperator,
                                             0.8).initialize(evaluation)
           ).add_callback(lambda e: print(e.fittest))
    eva.run()
Esempio n. 10
0
def test_iteration_calls_ranker():
    ranker = Ranker(lambda x: 1.0)
    assert not ranker.ranked_population
    eva = EvolutionaryAlgorithm(
        ranker=ranker,
        selector=Random(selection_size=1),
        population_size=1,
        generations=1,
        individual_structure=UniformIndividualStructure(
            IntGene(lower_bound=0, upper_bound=1)),
        multiple_individual_operators=[],
        single_individual_operators=[],
    )
    eva.run()
    assert len(eva._population) == len(ranker.ranked_population)
    assert set(eva._population) == set(r[0] for r in ranker.ranked_population)
Esempio n. 11
0
def test_iteration_calls_multiple_individual_operator():
    individual_structure = UniformIndividualStructure(
        IntGene(lower_bound=0, upper_bound=1))
    crossover_operator = OnePointCrossoverOperator(individual_structure)
    eva = EvolutionaryAlgorithm(
        ranker=Ranker(lambda x: 1.0),
        selector=Random(selection_size=1),
        population_size=1,
        generations=1,
        individual_structure=individual_structure,
        multiple_individual_operators=[(crossover_operator, 1)],
        single_individual_operators=[],
    )
    expect(crossover_operator).__call__.once().and_return((1, ))
    eva.run()
    assert eva._population[0] == (1, )
Esempio n. 12
0
def test_iterations_calls_callback():
    counter = 0

    def callback(_: Evolution):
        nonlocal counter
        counter += 1

    eva = EvolutionaryAlgorithm(
        ranker=Ranker(lambda x: 1.0),
        selector=Random(selection_size=1),
        population_size=1,
        generations=1,
        individual_structure=UniformIndividualStructure(
            IntGene(lower_bound=0, upper_bound=1)),
        multiple_individual_operators=[],
        single_individual_operators=[],
        iteration_callbacks=[callback],
    )
    eva.run()
    assert counter == 1
Esempio n. 13
0
def test_iteration_calls_multiple_instances_of_single_individual_operator():
    individual_structure = UniformIndividualStructure(
        IntGene(lower_bound=0, upper_bound=1))
    mutation_operator = MutationOperator(individual_structure)
    mutation_operator_2 = MutationOperator(individual_structure)
    eva = EvolutionaryAlgorithm(
        ranker=Ranker(lambda x: 1.0),
        selector=Random(selection_size=1),
        population_size=1,
        generations=1,
        individual_structure=individual_structure,
        multiple_individual_operators=[],
        single_individual_operators=[(mutation_operator, 1),
                                     (mutation_operator_2, 1)],
    )
    expect(mutation_operator).__call__.once().and_return((1, ))
    expect(mutation_operator_2).__call__.once().with_args((1, )).and_return(
        (0, ))
    eva.run()
    assert eva._population[0] == (0, )
Esempio n. 14
0
def test_iteration_preserves_elites():
    ranker = Ranker(lambda x: 1.0)
    expect(ranker).rank.once()
    ranker.ranked_population = [((0, ), 3)] + [((1, ), 0)] * 4
    selector = Random(selection_size=1)
    expect(selector).__call__.once().and_return([(1, )])
    eva = EvolutionaryAlgorithm(
        ranker=ranker,
        selector=selector,
        population_size=5,
        generations=1,
        individual_structure=UniformIndividualStructure(
            IntGene(lower_bound=0, upper_bound=1)),
        multiple_individual_operators=[],
        single_individual_operators=[],
        elite_size=1,
    )
    # invert order, to make sure that we're indeed selecting the elites.
    eva.set_initial_population(ranker.ranked_population[-1:])
    eva.run()
    assert eva._population[0] == (0, )
    assert len(eva._population) == 5
Esempio n. 15
0
def tree_structure(nodes: int):
    return TreeIndividualStructure(
        tuple(IntGene(lower_bound=0, upper_bound=50) for _ in range(nodes)))