Esempio n. 1
0
def get_df_1(ticker):
    yahoo_financials = YahooFinancials(ticker)
    stats_1 = yahoo_financials.get_key_statistics_data()
    df_1 = pd.DataFrame(stats_1).loc[['enterpriseValue'], :].transpose()
    df_1['marketCap'] = [yahoo_financials.get_market_cap()]

    return df_1
    def calculate_ps_metrics(stock):
        yahoo_stock = YahooFinancials(stock.symbol)
        market_cup = yahoo_stock.get_market_cap()
        if stock.target_avg_sales:
            multiplier = FilteredStocks.get_multiplier(
                stock.target_avg_sales[-1])
            target_avg_sales = float(stock.target_avg_sales[:-1]) * multiplier
            try:
                stock.price_to_sell_ratio = round(
                    market_cup / target_avg_sales, 2)
                stock.ps_to_growth_ratio = round(
                    stock.price_to_sell_ratio /
                    float(stock.target_sales_growth[:-1]), 2)
                ev = (yahoo_stock.get_key_statistics_data()[stock.symbol]
                      ["enterpriseValue"])
                profit_margins = (yahoo_stock.get_key_statistics_data()[
                    stock.symbol]["profitMargins"])
                stock.ev_to_sell_ratio = round(ev / target_avg_sales, 2)
                stock.gross_margins = round(
                    yahoo_stock.get_gross_profit() /
                    yahoo_stock.get_total_revenue() * 100, 2)
                ev_to_profit_ratio = round(
                    stock.ev_to_sell_ratio / profit_margins, 2)
                print("gross_margins : " + str(stock.gross_margins))
                print("ev sells : " + str(stock.ev_to_sell_ratio))
                print("ev / earnings : " + str(ev_to_profit_ratio))
                print("ps_to_growth : " + str(stock.ps_to_growth_ratio))
                print("sales targets:" + str(stock.target_sales_growth[:-1]))
                print("growth adujsted ev / sells: " + str(
                    round(
                        stock.ev_to_sell_ratio /
                        float(stock.target_sales_growth[:-1]), 2)))

            except Exception as e:
                print(str(e))
Esempio n. 3
0
def calc_b2m(tickers):
    total = {}
    for index, ticker in enumerate(tickers):
        if index % 1 == 0:
            print('Fetching B2M Data for %d out of %d' % (index, len(tickers)))
        yahoo_financials = YahooFinancials(ticker)
        total[ticker] = yahoo_financials.get_book_value(
        ) / yahoo_financials.get_market_cap()
    return total
Esempio n. 4
0
def portfolio(request, portfolio_pk):

    portfolio = Portfolio.objects.get(pk=portfolio_pk)
    check_ownership(request, portfolio)
    stock_not_found = False

    quote_name = request.POST.get('quote', None)
    if quote_name:
        quote_name = quote_name.upper()
        yf = YahooFinancials(quote_name)
        exchange = yf.get_stock_exchange()
        try:
            stock = Stock.objects.get(name=quote_name)
        except Stock.DoesNotExist:
            stock = Stock.objects.create(
                name=quote_name,
                stock_exchange=yf.get_stock_exchange(),
                market_cap=convert_number(yf.get_market_cap()),
                last_price=convert_number(yf.get_current_price())
            )
            PortfolioStock.objects.get_or_create(stock=stock,
                portfolio=portfolio)

    stocks = PortfolioStock.objects.filter(portfolio=portfolio).order_by("-stock__value_score")

    operations = Operation.objects.filter(portfolio_stock__portfolio=portfolio)[0:10]

    total_value, total_spent, profit = portfolio.balance_sheet()
    if total_spent != 0:
        profit_purcent = round(profit / total_spent * 100, 2)
    else:
        profit_purcent = 0

    total_cash_value = total_value + portfolio.cash

    c = {
        'quote_name': quote_name,
        'stock_not_found': stock_not_found,
        'portfolio':portfolio,
        'stocks': stocks,
        'operations':operations,
        'total_value':total_value,
        'total_spent':total_spent,
        'profit':profit,
        'profit_purcent':profit_purcent,
        'total_cash_value':total_cash_value,
    }
    c.update(csrf(request))

    return render_to_response('portfolio.html', c)
Esempio n. 5
0
async def stock(ctx, ticker, info):
    yahoo_financials = YahooFinancials(ticker)
    if (info == "current"):
        await ctx.send(ticker.upper() + " current share price: $" +
                       str(yahoo_financials.get_current_price()))
    if (info == "open"):
        await ctx.send(ticker.upper() + " share price at opening: $" +
                       str(yahoo_financials.get_open_price()))
    if (info == "prevclose"):
        await ctx.send(ticker.upper() + " share priced at previous close: $" +
                       str(yahoo_financials.get_prev_close_price()))
    if (info == "cap"):
        await ctx.send(ticker.upper() + " market cap: $" +
                       str("{:,}".format(yahoo_financials.get_market_cap())))
    if (info == "dailylow"):
        await ctx.send(ticker.upper() + " daily low: $" +
                       str(yahoo_financials.get_daily_low()))
    if (info == "dailyhigh"):
        await ctx.send(ticker.upper() + " daily high: $" +
                       str(yahoo_financials.get_daily_high()))
    if (info == "yearlow"):
        await ctx.send(ticker.upper() + " yearly low: $" +
                       str(yahoo_financials.get_yearly_low()))
    if (info == "yearhigh"):
        await ctx.send(ticker.upper() + " yearly high: $" +
                       str(yahoo_financials.get_yearly_high()))
    if (info == "rev"):
        await ctx.send(ticker.upper() + " total revenue: $" +
                       str("{:,}".format(yahoo_financials.get_total_revenue()))
                       )
    if (info == "net"):
        await ctx.send(ticker.upper() + " net income: $" +
                       str("{:,}".format(yahoo_financials.get_net_income())))
    if (info == "op"):
        await ctx.send(
            ticker.upper() + " operating income: $" +
            str("{:,}".format(yahoo_financials.get_operating_income())))
    if (info == "profit"):
        await ctx.send(ticker.upper() + " gross profit: $" +
                       str("{:,}".format(yahoo_financials.get_gross_profit())))
Esempio n. 6
0
def create_retrieve_thread(tickers, metric, file_name, data_dict, batch_no):
    start_loop = time.time()
    print(
        f"Batch/thread {batch_no + 1}: Tickers to be retrieved are: {tickers}")
    yahoo_financials = YahooFinancials(tickers)

    if metric == "balance":
        print(f"Retrieving annual balance sheets from Yahoo Finance...")
        financial_statement = yahoo_financials.get_financial_stmts(
            'annual', 'balance')['balanceSheetHistory']

    elif metric == "income":
        print(
            f"Retrieving annual income statement history from Yahoo Finance..."
        )
        financial_statement = yahoo_financials.get_financial_stmts(
            'annual', 'income')['incomeStatementHistory']

    elif metric == "cap":
        print(f"Retrieving market cap information from Yahoo Finance...")
        financial_statement = yahoo_financials.get_market_cap()

    else:
        print("Metric entered is not recognized.")
        financial_statement = {}

    dict_lock.acquire()
    data_dict.update(financial_statement)

    end_loop = time.time()

    print(f"Saving batch {batch_no + 1} to JSON file...")
    json.dump(data_dict, open(file_name + '.json', 'w'))
    dict_lock.release()

    print(
        f"Time elapsed for batch {batch_no + 1}: {end_loop - start_loop}, metric: {metric}"
    )
    print()
Esempio n. 7
0
def Statement():
    page_bg_img = '''
    <style>
    body {
    background-image: url("https://images.pexels.com/photos/2748757/pexels-photo-2748757.jpeg?auto=compress&cs=tinysrgb&dpr=1&w=1000");
    background-size: cover;
    }
    </style>
    '''
    st.markdown(page_bg_img, unsafe_allow_html=True)
    symbols = 'https://raw.githubusercontent.com/Moly-malibu/Stocks/main/bxo_lmmS1.csv'
    df = pd.read_csv(symbols)
    ticker = st.sidebar.selectbox('Stocks by Company', (df['Symbol']))
    tickerData = YahooFinancials(ticker)

    def get_symbol(symbol):
        url = "http://d.yimg.com/autoc.finance.yahoo.com/autoc?query={}&region=1&lang=en".format(
            symbol)
        result = requests.get(url).json()
        for x in result['ResultSet']['Result']:
            if x['symbol'] == symbol:
                return x['name']

    company_name = get_symbol(ticker.upper())
    st.write("""# Analysis of """, company_name)
    company = yf.Ticker(ticker)
    # st.write(company.info)
    company_general = st.sidebar.checkbox("Financial Ratio")
    if company_general:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Financial Ratios</h1>",
            unsafe_allow_html=True)
        st.write('***Payout Ratio:*** ', company.info["payoutRatio"])
        st.write('***Trailing Annual Dividend Yield:*** ',
                 company.info["trailingAnnualDividendYield"])
        st.write('***Dividend Rate:*** ', company.info["dividendRate"])
        st.write('***Profit Margins: ***', company.info["profitMargins"])
        st.write('***Peg Ratio: ***', company.info["pegRatio"])
        yahoo_financials = YahooFinancials(ticker)
        marketcap = yahoo_financials.get_market_cap()
        price_to_sales = yahoo_financials.get_current_price()
        dividend_yield = yahoo_financials.get_dividend_yield()
        income_balance = si.get_income_statement(ticker)
        transpose_income = income_balance.transpose()
        balance_income = si.get_balance_sheet(ticker)
        transpose_balance = balance_income.transpose()
        st.write("""**Dividends**""", company.dividends)
        income = si.get_income_statement(ticker)
        transpose = income.transpose()
        interest_coverage1 = transpose['operatingIncome']
        interest_coverage2 = transpose['interestExpense']
        st.write(
            '***Interest Coverage:*** Operating Income / interest Expenses',
            interest_coverage1 / interest_coverage2)
        gross_profit_margin1 = transpose['totalRevenue']
        gross_profit_margin2 = transpose['costOfRevenue']
        st.write(
            '***Gross Profit Margin:*** Total Revenue / Gross Profit Margin',
            (gross_profit_margin1 - gross_profit_margin2) /
            gross_profit_margin1)
        balance = si.get_balance_sheet(ticker)
        transpose = balance.transpose()
        current_ratio1 = transpose['totalCurrentAssets']
        current_ratio2 = transpose['totalCurrentLiabilities']
        debt_to_assets1 = transpose['otherCurrentAssets']
        debt_to_assets2 = transpose['totalAssets']
        st.write('***Debit Assets:*** Total Debit / Total Assets',
                 (debt_to_assets1 / debt_to_assets2))
        debt_to_equity1 = transpose['otherCurrentAssets']
        debt_to_equity2 = transpose['totalStockholderEquity']
        st.write(
            '***Debit to Equity:*** Total Debit / Total Stock Holders Equity',
            (debt_to_equity1 / debt_to_equity2))
        ROE1 = transpose_income['netIncome']
        ROE2 = transpose_balance['totalStockholderEquity']
        st.write(
            '***Return On Equity ROE:*** Net Income / (Total Stock Holder Equity + Total Stock Holder Equity)/2',
            (ROE1 / ((ROE2 + ROE2) / 2)))
        ROA1 = transpose_income['netIncome']
        ROA2 = transpose_balance['totalAssets']
        st.write('***Return On Assets:*** Net Income / Total Assets',
                 (ROA1 / ROA2))

    company_simulation = st.sidebar.checkbox("Monte Carlo Simulation")
    if company_simulation:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Monte Carlo Simulation Price</h1>",
            unsafe_allow_html=True)
        st.write(
            """Monte Carlo Simulation project future price for the stocks. """)
        yahoo_financials = YahooFinancials(ticker)
        price = yahoo_financials.get_current_price()
        st.write('***Current Price:***', price)
        marketcap = yahoo_financials.get_market_cap()
        st.write('***Market Capital***', marketcap)
        income_balance = si.get_income_statement(ticker)
        transpose_income = income_balance.transpose()
        revenue = transpose_income['totalRevenue']
        st.write('***Price to sales:*** (Market Capital / Revenue',
                 marketcap / revenue)
        price_to_earnings = transpose_income['netIncome']
        st.write('***Price to Earnings:*** (Market Capital/ Net Income',
                 marketcap / price_to_earnings)
        balance_income = si.get_balance_sheet(ticker)
        transpose_balance = balance_income.transpose()
        price_to_book = transpose_balance['totalStockholderEquity']
        st.write('***Price to book:*** (marketcap/Total Stock Holders Equity',
                 marketcap / price_to_book)
        start = st.date_input("Please enter date begin Analysis: ")
        price = yf.download(ticker, start=start, end=None)['Close']
        returns = price.pct_change()
        last_price = price[-1]
        num_simulations = 1000
        num_days = 252
        num_simulations_df = pd.DataFrame()
        for x in range(num_simulations):
            count = 0
            daily_vol = returns.std()
            price_series = []
            price = last_price * (1 + np.random.normal(0, daily_vol))
            price_series.append(price)
            for y in range(num_days):
                if count == 251:
                    break
                price = price_series[count] * (1 +
                                               np.random.normal(0, daily_vol))
                price_series.append(price)
                count += 1
            num_simulations_df[x] = price_series
        fig = plt.figure()
        plt.title('Monte Carlo Simulation')
        plt.plot(num_simulations_df)
        plt.axhline(y=last_price, color='r', linestyle='-')
        plt.xlabel('Day')
        plt.ylabel('Price')
        st.set_option('deprecation.showPyplotGlobalUse', False)
        st.pyplot()
        st.write('Price Series Predict: ', num_simulations_df)
    # company_general = st.sidebar.checkbox("Quick_Ratio")
    # if company_general:
    #     st.subheader("""**Quick Ratio**""")
    #     balance=si.get_balance_sheet(ticker)
    #     transpose=balance.transpose()
    #     quick_ratio1 = transpose['otherCurrentAssets']
    #     quick_ratio2 = transpose['inventory']
    #     quick_ratio3 = transpose['otherCurrentLiab']
    #     quick_ratio = ((quick_ratio1-quick_ratio2)/quick_ratio3)
    #     if not quick_ratio2:
    #         st.write("No data available")
    #     else:
    #         st.write('(***Quick Ratio:*** CurrentAssets - Inventory)/Current Liabilities)', (quick_ratio1-quick_ratio2)/quick_ratio3)
    company_hist = st.sidebar.checkbox("Cash Flow")
    if company_hist:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Cash Flow</h1>",
            unsafe_allow_html=True)
        display_cash = si.get_cash_flow(ticker)
        if display_cash.empty == True:
            st.write("No data available")
        else:
            st.write(display_cash)
    company_hist = st.sidebar.checkbox("Income Statement")
    if company_hist:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Income Statement</h1>",
            unsafe_allow_html=True)
        display_income_stat = si.get_income_statement(ticker)
        if display_income_stat.empty == True:
            st.write("No data available")
        else:
            st.write(display_income_stat)
    company_hist = st.sidebar.checkbox("Balance Sheet")
    if company_hist:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Balance Sheet</h1>",
            unsafe_allow_html=True)
        display_balance = si.get_balance_sheet(ticker)
        if display_balance.empty == True:
            st.write("No data available")
        else:
            st.write(display_balance)
    company_hist = st.sidebar.checkbox("Quote Table")
    if company_hist:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Quote Table</h1>",
            unsafe_allow_html=True)
        display_table = si.get_quote_table(ticker, dict_result=False)
        if display_table.empty == True:
            st.write("No data available")
        else:
            st.write(display_table)
        quote_table = si.get_quote_table(ticker)
        t = quote_table["Forward Dividend & Yield"]
        st.write('Forward Dividend & Yield:', t)
        display_capital = si.get_quote_table(ticker)["Market Cap"]
        st.write('Market Capital', display_capital)
    company_hist = st.sidebar.checkbox("Call Option")
    if company_hist:
        st.markdown(
            "<h1 style='text-align: center; color: #002966;'>Call Option</h1>",
            unsafe_allow_html=True)
        c = ops.get_calls(ticker)
        transpose = c.transpose()
        st.write(transpose)
Esempio n. 8
0
        print("Loading ticker list...")
        with open('ticker_list.json') as json_list:
            ticker_list = json.load(json_list)

    # ticker_list = ticker_list[0:20]   # For debugging purposes, when we want a smaller ticker_list to work with

    # Refresh market cap info without retrieving all the other info about the stocks
    if not args.refresh and args.refresh_market_caps:
        with open('market_cap_info.json') as json_list:
            market_cap = json_list
        cap_keys = market_cap.keys()
        print(f"Keys in market_cap dictionary: {cap_keys}")
        yahoo_financials = YahooFinancials(cap_keys)

        print("Retrieving market cap information from Yahoo Finance...")
        market_cap = yahoo_financials.get_market_cap()
        json.dump(market_cap, open('market_cap_info.json', 'w'))

    # Retrieve the ticker information (balance sheets, income statements, and market caps), scrape the data in
    # batches, and save in batches.
    if args.refresh and not args.continue_refresh:
        print("Refreshing all stock data...")
        balance_sheet = {}
        income_statement = {}
        market_cap = {}
        retrieve_data(batch_size, ticker_list, "balance", fn_balance,
                      balance_sheet)
        retrieve_data(batch_size, ticker_list, "income", fn_income,
                      income_statement)
        retrieve_data(batch_size, ticker_list, "cap", fn_cap, market_cap)
        clean_tickers()
from yahoofinancials import YahooFinancials

ticker = 'KO'
YF = YahooFinancials(ticker)

balance_sheet_data_qt = YF.get_financial_stmts('annual', 'balance')
income_statement_data_qt = YF.get_financial_stmts('annual', 'income')
cash_statement_data_qt = YF.get_financial_stmts('annual', 'cash')
all_statement_data_qt = YF.get_financial_stmts('annual',
                                               ['income', 'cash', 'balance'])
apple_earnings_data = YF.get_stock_earnings_data()
outstanding_share = YF.get_num_shares_outstanding()
market_cap = YF.get_market_cap()
#apple_net_income = YF.get_net_income()

#historical_stock_prices = YF.get_historical_price_data('2008-08-15', '2018-09-15', 'daily')

print("Balance", balance_sheet_data_qt)
print("income statement", income_statement_data_qt)
print("cash statement", cash_statement_data_qt)
print("earnings", apple_earnings_data)
print("outstanding shares", outstanding_share)
print("market cap", market_cap)
#print ("net income", apple_net_income)
#print( "Div", historical_stock_prices[ticker]['eventsData']['dividends'])

#print (YF.get_total_revenue())
#print (YF.get_50day_moving_avg())

print(income_statement_data_qt)
print(all_statement_data_qt)
Esempio n. 10
0
companyTickers = companiesData['Ticker'].tolist()
# print(companyTickers)

pe_ratios = []
market_caps = []
dividend_yields = []
sectors = []
industries = []
names = []

# For each company in the S&P 500 list, extract its PE ratio and market cap and add each of them to its respective list
for ticker in companyTickers:
    yahoo_financials = YahooFinancials(ticker)
    print('Downloading data for ' + ticker + '...')
    pe_ratios.append(yahoo_financials.get_pe_ratio())
    market_caps.append(yahoo_financials.get_market_cap())
    try:
        dividend_yields.append(
            str(format(yahoo_financials.get_dividend_yield() * 100, ".2f")) +
            '%')
    except:
        dividend_yields.append(str(yahoo_financials.get_dividend_yield()))
    sectors.append(yahoo_data.getSector(ticker))
    industries.append(yahoo_data.getIndustry(ticker))
    names.append(yahoo_data.getName(ticker))

companiesData['Name'] = names
companiesData['Sector'] = sectors
companiesData['Industry'] = industries
companiesData['P/E'] = pe_ratios
companiesData['Market Cap'] = market_caps