def main(): output_format = "plaintext" lang_a = sys.argv[1] lang_b = sys.argv[2] model_path = os.path.abspath(sys.argv[3]) nltk.data.path += [model_path] model = YalignModel.load(model_path) pairing = read_pairing(open(sys.argv[4]), lang_a, lang_b) src_needed = set([a for a, _ in pairing]) tgt_needed = set([a for _, a in pairing]) src_articles = read_articles(open(sys.argv[5]), src_needed) tgt_articles = read_articles(open(sys.argv[6]), tgt_needed) for src, tgt in pairing: try: text_a = "\n".join(src_articles[src]) text_b = "\n".join(tgt_articles[tgt]) document_a = text_to_document(text_a, lang_a) document_b = text_to_document(text_b, lang_b) pairs = model.align(document_a, document_b) sys.stderr.write(u"{0} pairs in {1}-{2}\n".format(len(pairs), src, tgt).encode("utf-8")) write_plaintext(sys.stdout, pairs) except KeyError: sys.stderr.write(u"KeyError with {0}-{1}\n".format(src, tgt).encode("utf-8")) continue
def setUp(self): random.seed(hash("Y U NO?")) base_path = os.path.dirname(os.path.abspath(__file__)) word_scores = os.path.join(base_path, "data", "test_word_scores_big.csv") parallel_corpus = os.path.join(base_path, "data", "parallel-en-es.txt") A, B = parallel_corpus_to_documents(parallel_corpus) A = A[:25] B = B[:25] self.alignments = list(training_alignments_from_documents(A, B)) self.A, self.B, self.correct_alignments = \ list(training_scrambling_from_documents(A, B)) # Word score word_pair_score = WordPairScore(word_scores) # Sentence Score sentence_pair_score = SentencePairScore() sentence_pair_score.train(self.alignments, word_pair_score) # Yalign model self.min_ = sentence_pair_score.min_bound self.max_ = sentence_pair_score.max_bound gap_penalty = (self.min_ + self.max_) / 2.0 document_aligner = SequenceAligner(sentence_pair_score, gap_penalty) self.model = YalignModel(document_aligner, 1)
def test_save_load_and_align(self): doc1 = [Sentence([u"House"]), Sentence([u"asoidfhuioasgh"])] doc2 = [Sentence([u"Casa"])] result_before_save = self.model.align(doc1, doc2) # Save tmp_folder = tempfile.mkdtemp() self.model.save(tmp_folder) # Load new_model = YalignModel.load(tmp_folder) result_after_load = new_model.align(doc1, doc2) self.assertEqual(result_before_save, result_after_load) self.assertEqual(self.model.threshold, new_model.threshold) self.assertEqual(self.model.document_pair_aligner.penalty, new_model.document_pair_aligner.penalty)
def setUp(self): word_scores = os.path.join(data_path, "test_word_scores_big.csv") self.parallel_corpus = os.path.join(data_path, "parallel-en-es.txt") # Documents A, B = parallel_corpus_to_documents(self.parallel_corpus) self.document_a = A[:30] self.document_b = B[:30] training = training_alignments_from_documents(self.document_a, self.document_b) # Word score word_pair_score = WordPairScore(word_scores) # Sentence Score sentence_pair_score = SentencePairScore() sentence_pair_score.train(training, word_pair_score) # Yalign model document_aligner = SequenceAligner(sentence_pair_score, 0.49) self.model = YalignModel(document_aligner)
def test_command_tool(self): if self.cmdline is None: return tmpdir = tempfile.mkdtemp() _, tmpfile = tempfile.mkstemp() self.model.save(tmpdir) cmd = self.cmdline.format(corpus=self.parallel_corpus, model=tmpdir) outputfh = open(tmpfile, "w") subprocess.call(cmd, shell=True, stdout=outputfh) outputfh = open(tmpfile) output = outputfh.read() A, B = parallel_corpus_to_documents(self.parallel_corpus) model = YalignModel.load(tmpdir) value = self.alignment_function(A, B, model) self.assertIn("{}%".format(value), output)
def setUp(self): random.seed(hash("Y U NO?")) base_path = os.path.dirname(os.path.abspath(__file__)) word_scores = os.path.join(base_path, "data", "test_word_scores_big.csv") parallel_corpus = os.path.join(base_path, "data", "parallel-en-es.txt") A, B = parallel_corpus_to_documents(parallel_corpus) A = A[:25] B = B[:25] self.alignments = list(training_alignments_from_documents(A, B)) self.A, self.B, self.correct_alignments = list(training_scrambling_from_documents(A, B)) # Word score word_pair_score = WordPairScore(word_scores) # Sentence Score sentence_pair_score = SentencePairScore() sentence_pair_score.train(self.alignments, word_pair_score) # Yalign model self.min_ = sentence_pair_score.min_bound self.max_ = sentence_pair_score.max_bound gap_penalty = (self.min_ + self.max_) / 2.0 document_aligner = SequenceAligner(sentence_pair_score, gap_penalty) self.model = YalignModel(document_aligner, 1)
class TestYalignModel(unittest.TestCase): def setUp(self): random.seed(hash("Y U NO?")) base_path = os.path.dirname(os.path.abspath(__file__)) word_scores = os.path.join(base_path, "data", "test_word_scores_big.csv") parallel_corpus = os.path.join(base_path, "data", "parallel-en-es.txt") A, B = parallel_corpus_to_documents(parallel_corpus) A = A[:25] B = B[:25] self.alignments = list(training_alignments_from_documents(A, B)) self.A, self.B, self.correct_alignments = \ list(training_scrambling_from_documents(A, B)) # Word score word_pair_score = WordPairScore(word_scores) # Sentence Score sentence_pair_score = SentencePairScore() sentence_pair_score.train(self.alignments, word_pair_score) # Yalign model self.min_ = sentence_pair_score.min_bound self.max_ = sentence_pair_score.max_bound gap_penalty = (self.min_ + self.max_) / 2.0 document_aligner = SequenceAligner(sentence_pair_score, gap_penalty) self.model = YalignModel(document_aligner, 1) def test_save_file_created(self): tmp_folder = tempfile.mkdtemp() self.model.save(tmp_folder) model_path = os.path.join(tmp_folder, "aligner.pickle") metadata_path = os.path.join(tmp_folder, "metadata.json") self.assertTrue(os.path.exists(model_path)) self.assertTrue(os.path.exists(metadata_path)) def test_save_load_and_align(self): doc1 = [Sentence([u"House"]), Sentence([u"asoidfhuioasgh"])] doc2 = [Sentence([u"Casa"])] result_before_save = self.model.align(doc1, doc2) # Save tmp_folder = tempfile.mkdtemp() self.model.save(tmp_folder) # Load new_model = YalignModel.load(tmp_folder) result_after_load = new_model.align(doc1, doc2) self.assertEqual(result_before_save, result_after_load) self.assertEqual(self.model.threshold, new_model.threshold) self.assertEqual(self.model.document_pair_aligner.penalty, new_model.document_pair_aligner.penalty) def test_reasonable_alignment(self): doc1 = [Sentence([u"House"]), Sentence([u"asoidfhuioasgh"])] doc2 = [Sentence([u"Casa"])] result = self.model.align(doc1, doc2) result = [(list(x), list(y)) for x, y in result] self.assertIn((list(doc1[0]), list(doc2[0])), result) def test_optimize_gap_penalty_and_threshold_finishes(self): self.model.optimize_gap_penalty_and_threshold(self.A, self.B, self.correct_alignments) def test_optimize_gap_penalty_and_threshold_is_best(self): def evaluate(penalty, threshold): self.model.document_pair_aligner.penalty = penalty self.model.threshold = threshold predicted = self.model.align_indexes(self.A, self.B) return F_score(predicted, self.correct_alignments)[0] random.seed(hash("12345")) self.model.optimize_gap_penalty_and_threshold(self.A, self.B, self.correct_alignments) best_score = evaluate(self.model.document_pair_aligner.penalty, self.model.threshold) for _ in xrange(50): penalty = random.uniform(self.min_, self.max_ / 2.0) threshold = random.uniform(self.min_, self.max_) score = evaluate(penalty, threshold) self.assertGreaterEqual(best_score, score)