display(Image(data=graph.pipe(format='png'))) return estimator # %% plt.rcParams['figure.figsize'] = (12,8) plt.style.use("ggplot") rf = RandomForestClassifier(bootstrap='True',class_weight=None,criterion='gini',max_depth=3 ,max_features='auto',max_leaf_nodes=None,min_impurity_decrease=1 ,min_samples_split=2,min_weight_fraction_leaf=0.0,n_estimators=100 ,n_jobs=1,oob_score=False,random_state=1,verbose=False,warm_start=False) viz = FeatureImportances(rf) viz.fit(X_train,y_train) viz.show() # %% visualizer = ROCAUC(rf,classes=['stayed','quit']) visualizer.fit(X_train,y_train) visualizer.score(X_test,y_test) visualizer.poof() # %% dt = DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=0, splitter='best') visualizer = ROCAUC(dt, classes=["stayed", "quit"]) visualizer.fit(X_train, y_train) # Fit the training data to the visualizer visualizer.score(X_test, y_test) # Evaluate the model on the test data visualizer.poof(); # %%
min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=-1, oob_score=False, random_state=1, verbose=False, warm_start=False) viz = FeatureImportances(rf) viz.fit(X_train, y_train) viz.show() dt = DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=0, splitter='best') viz = FeatureImportances(dt) viz.fit(X_train, y_train) viz.show() from yellowbrick.classifier import ROCAUC visualizer = ROCUAC(rf, classes=['stayed', 'quit']) visualizer.fit(X_train, y_train) visualizer.score(X_test, y_test)