def _block(self, filters):
     x1 = DarkConv(
         filters=filters // 2,
         kernel_size=(1,1),
         strides=(1,1),
         padding="same",
         use_bn= True,
         kernel_initializer=self._kernel_initializer,
         bias_initializer=self._bias_initializer,
         norm_moment=self._norm_moment,
         norm_epsilon=self._norm_epsilon,
         activation=self._activation,
         leaky_alpha=self._leaky_alpha)
     x2 = DarkConv(
         filters=filters,
         kernel_size=(3,3),
         strides=(1,1),
         padding="same",
         use_bn= True,
         kernel_initializer=self._kernel_initializer,
         bias_initializer=self._bias_initializer,
         norm_moment=self._norm_moment,
         norm_epsilon=self._norm_epsilon,
         activation=self._activation,
         leaky_alpha=self._leaky_alpha)
     return [x1, x2]
Esempio n. 2
0
 def block(inputs):
     x_route = DarkConv(filters=filters // 2,
                        kernel_size=(1, 1),
                        strides=(1, 1),
                        padding="same",
                        activation="leaky")(inputs)
     x = DarkConv(filters=filters // 4,
                  kernel_size=(1, 1),
                  strides=(1, 1),
                  padding="same",
                  activation="leaky")(x_route)
     x = ks.layers.UpSampling2D(size=2)(x)
     return x_route, x
Esempio n. 3
0
    def build(self, input_shape):
        if self._downsample:
            self._dconv = DarkConv(filters=self._filters,
                                   kernel_size=(3, 3),
                                   strides=(2, 2),
                                   padding='same',
                                   use_bias=self._use_bias,
                                   kernel_initializer=self._kernel_initializer,
                                   bias_initializer=self._bias_initializer,
                                   use_bn=self._use_bn,
                                   use_sync_bn=self._use_sync_bn,
                                   norm_moment=self._norm_moment,
                                   norm_epsilon=self._norm_epsilon,
                                   activation=self._conv_activation,
                                   leaky_alpha=self._leaky_alpha)
        else:
            self._dconv = Identity()

        self._conv1 = DarkConv(filters=self._filters // 2,
                               kernel_size=(1, 1),
                               strides=(1, 1),
                               padding='same',
                               use_bias=self._use_bias,
                               kernel_initializer=self._kernel_initializer,
                               bias_initializer=self._bias_initializer,
                               use_bn=self._use_bn,
                               use_sync_bn=self._use_sync_bn,
                               norm_moment=self._norm_moment,
                               norm_epsilon=self._norm_epsilon,
                               activation=self._conv_activation,
                               leaky_alpha=self._leaky_alpha)
        self._conv2 = DarkConv(filters=self._filters,
                               kernel_size=(3, 3),
                               strides=(1, 1),
                               padding='same',
                               use_bias=self._use_bias,
                               kernel_initializer=self._kernel_initializer,
                               bias_initializer=self._bias_initializer,
                               use_bn=self._use_bn,
                               use_sync_bn=self._use_sync_bn,
                               norm_moment=self._norm_moment,
                               norm_epsilon=self._norm_epsilon,
                               activation=self._conv_activation,
                               leaky_alpha=self._leaky_alpha)

        self._shortcut = ks.layers.Add()
        self._activation_fn = ks.layers.Activation(
            activation=self._sc_activation)

        super().build(input_shape)
        return
Esempio n. 4
0
 def block(inputs):
     x = DarkConv(filters=filters // 2,
                  kernel_size=(1, 1),
                  strides=(1, 1),
                  padding="same",
                  activation="leaky")(inputs)
     return x, None
Esempio n. 5
0
    def _get_layers(self):
        routes = dict()
        upsamples = dict()
        prediction_heads = dict()

        for i, filters in enumerate(self._filters):
            if i == 0 and self._model_name == "spp":
                routes[filters] = DarkRouteProcess(
                    filters=filters,
                    repetitions=self._repetitions + 1,
                    insert_spp=True)
            else:
                routes[filters] = DarkRouteProcess(
                    filters=filters // self._mod,
                    repetitions=self._repetitions,
                    insert_spp=False)

            if i != len(self._filters) - 1:
                upsamples[filters] = DarkUpsampleRoute(filters=filters //
                                                       (4 * self._mod))
                self.mod = 1

            prediction_heads[filters] = DarkConv(filters=self.pred_depth,
                                                 kernel_size=(1, 1),
                                                 strides=(1, 1),
                                                 padding="same",
                                                 use_bn=False,
                                                 activation=None)
        return routes, upsamples, prediction_heads
 def block(inputs):
     x = DarkConv(filters=filters // 2,
                  kernel_size=(1, 1),
                  strides=(1, 1),
                  padding="same",
                  activation="leaky",
                  l2_regularization=self._weight_decay)(inputs)
     return x, None
Esempio n. 7
0
    def call(inputs):
        if downsample:
            sample = DarkConv(filters=filters,
                              kernel_size=(3, 3),
                              strides=(2, 2),
                              padding='same')(inputs)
        else:
            sample = inputs

        x = DarkConv(filters=filters // 2,
                     kernel_size=(1, 1),
                     strides=(1, 1),
                     padding='same')(sample)
        x = DarkConv(filters=filters,
                     kernel_size=(3, 3),
                     strides=(1, 1),
                     padding='same')(x)

        x = ks.layers.Add()([x, sample])
        x = ks.layers.Activation(activation='relu')(x)
        return x
Esempio n. 8
0
 def to_tf(self, tensors):
     from yolo.modeling.building_blocks import DarkConv
     layer = DarkConv(
         filters=self.filters,
         kernel_size=(self.size, self.size),
         strides=(self.stride, self.stride),
         padding='same',  # TODO: THIS ONE
         dilation_rate=(self.dilation, self.dilation),
         use_bn=bool(self.batch_normalize),
         activation=activation_function_dn_to_keras_name(self.activation),
     )  # TODO: Where does groups go
     return layer(tensors[-1]), layer
 def _spp(self, filters):
     x1 = DarkConv(
         filters=filters // 2,
         kernel_size=(1,1),
         strides=(1,1),
         padding="same",
         use_bn= True,
         kernel_initializer=self._kernel_initializer,
         bias_initializer=self._bias_initializer,
         norm_moment=self._norm_moment,
         norm_epsilon=self._norm_epsilon,
         activation=self._activation,
         leaky_alpha=self._leaky_alpha)
     # repalce with spp
     x2 = DarkSpp([5, 9, 13])
     return [x1, x2]
Esempio n. 10
0
    def _get_attributes(self, input_shape):
        """ use config dictionary to generate all important attributes for head construction """
        inputs = collections.OrderedDict()
        input_shapes = collections.OrderedDict()
        routes = collections.OrderedDict()
        resamples = collections.OrderedDict()
        prediction_heads = collections.OrderedDict()

        start_width = input_shape[1]
        if input_shape[1] != None:
            start_width = start_width // 8

        start_height = input_shape[2]
        if input_shape[2] != None:
            start_height = start_height // 8

        for i, (key, path_keys) in enumerate(self._cfg_dict.items()):
            inputs[key] = ks.layers.Input(
                shape=[start_width, start_height, path_keys["depth"]])
            input_shapes[key] = tf.TensorSpec(
                [None, start_width, start_height, path_keys["depth"]])

            if type(path_keys["resample"]) != type(None):
                args = path_keys["resample_conditions"]
                layer = ks.utils.get_registered_object(path_keys["resample"])
                resamples[key] = layer(**args)

            args = path_keys["processor_conditions"].copy()
            args['l2_regularization'] = self._weight_decay
            layer = ks.utils.get_registered_object(path_keys["processor"])
            # print(path_keys["processor"], ks.utils.get_registered_object(path_keys["processor"]))
            routes[key] = layer(**args)

            args = path_keys["output_conditions"].copy()
            args['l2_regularization'] = self._weight_decay
            prediction_heads[key] = DarkConv(filters=self._conv_depth +
                                             path_keys["output-extras"],
                                             **args)

            if start_width != None:
                start_width //= 2
            if start_height != None:
                start_height //= 2

        # print(routes)
        # print(resamples)
        return inputs, input_shapes, routes, resamples, prediction_heads
Esempio n. 11
0
    def test_gradient_pass_though(self, filters):
        loss = ks.losses.MeanSquaredError()
        optimizer = ks.optimizers.SGD()
        with tf.device("/CPU:0"):
            test_layer = DarkConv(filters, kernel_size=(3, 3), padding="same")

        init = tf.random_normal_initializer()
        x = tf.Variable(
            initial_value=init(shape=(1, 224, 224, 3), dtype=tf.float32))
        y = tf.Variable(
            initial_value=init(shape=(1, 224, 224, filters), dtype=tf.float32))

        with tf.GradientTape() as tape:
            x_hat = test_layer(x)
            grad_loss = loss(x_hat, y)
        grad = tape.gradient(grad_loss, test_layer.trainable_variables)
        optimizer.apply_gradients(zip(grad, test_layer.trainable_variables))
        self.assertNotIn(None, grad)
        return
Esempio n. 12
0
 def test_pass_through(self, kernel_size, padding, strides):
     if padding == "same":
         pad_const = 1
     else:
         pad_const = 0
     x = ks.Input(shape=(224, 224, 3))
     test_layer = DarkConv(filters=64,
                           kernel_size=kernel_size,
                           padding=padding,
                           strides=strides,
                           trainable=False)
     outx = test_layer(x)
     print(outx.shape.as_list())
     test = [
         None,
         int((224 - kernel_size[0] + (2 * pad_const)) / strides[0] + 1),
         int((224 - kernel_size[1] + (2 * pad_const)) / strides[1] + 1), 64
     ]
     print(test)
     self.assertAllEqual(outx.shape.as_list(), test)
     return
    def build(self, input_shape):
        self.routes = dict()
        self.upsamples = dict()
        self.prediction_heads = dict()

        self.filters = list(reversed(list(input_shape.keys())))

        if self._model_type == "tiny":
            filter_mod = 2
        else:
            filter_mod = 1

        for i, key in enumerate(self.filters):
            if i == 0 and self._model_type == "spp":
                self.routes[key] = DarkRouteProcess(
                    filters=key,
                    repetitions=self._repetitions + 1,
                    insert_spp=True)
            else:
                self.routes[key] = DarkRouteProcess(
                    filters=key // filter_mod,
                    repetitions=self._repetitions,
                    insert_spp=False)

            if i != len(self.filters) - 1:
                self.upsamples[key] = DarkUpsampleRoute(filters=key //
                                                        (4 * filter_mod))
                filter_mod = 1

            self.prediction_heads[key] = DarkConv(filters=255,
                                                  kernel_size=(1, 1),
                                                  strides=(1, 1),
                                                  padding="same",
                                                  activation=None)

        # print(self.routes)
        # print(self.upsamples)
        # print(self.prediction_heads)
        return