Esempio n. 1
0
def yolo2_postprocess_np(yolo_outputs, image_shape, anchors, num_classes, model_image_size, max_boxes=20, confidence=0.25, iou_threshold=0.1):
    predictions = yolo2_head(yolo_outputs, anchors, num_classes, input_dims=model_image_size)

    boxes, classes, scores = yolo3_handle_predictions(predictions,
                                                max_boxes=max_boxes,
                                                confidence=confidence,
                                                iou_threshold=iou_threshold)
    boxes = yolo3_adjust_boxes(boxes, image_shape, model_image_size)

    return boxes, classes, scores
Esempio n. 2
0
def yolo_predict_tflite(interpreter, image, anchors, num_classes,
                        conf_threshold):
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    # check the type of the input tensor
    #if input_details[0]['dtype'] == np.float32:
    #floating_model = True

    height = input_details[0]['shape'][1]
    width = input_details[0]['shape'][2]

    image_data = preprocess_image(image, (height, width))
    image_shape = image.size

    interpreter.set_tensor(input_details[0]['index'], image_data)
    interpreter.invoke()

    out_list = []
    for output_detail in output_details:
        output_data = interpreter.get_tensor(output_detail['index'])
        out_list.append(output_data)

    predictions = yolo3_head(out_list,
                             anchors,
                             num_classes=num_classes,
                             input_dims=(height, width))

    boxes, classes, scores = yolo3_handle_predictions(
        predictions,
        max_boxes=100,
        confidence=conf_threshold,
        iou_threshold=0.4)
    boxes = adjust_boxes(boxes, image_shape, (height, width))

    return boxes, classes, scores
def validate_yolo_model_mnn(model_path, image_file, anchors, class_names,
                            loop_count):
    interpreter = MNN.Interpreter(model_path)
    session = interpreter.createSession()

    # TODO: currently MNN python API only support getting input/output tensor by default or
    # by name. so we need to hardcode the output tensor names here to get them from model
    if len(anchors) == 6:
        output_tensor_names = ['conv2d_1/Conv2D', 'conv2d_3/Conv2D']
    elif len(anchors) == 9:
        output_tensor_names = [
            'conv2d_3/Conv2D', 'conv2d_8/Conv2D', 'conv2d_13/Conv2D'
        ]
    else:
        raise ValueError('invalid anchor number')

    # assume only 1 input tensor for image
    input_tensor = interpreter.getSessionInput(session)
    # get input shape
    input_shape = input_tensor.getShape()
    if input_tensor.getDimensionType() == MNN.Tensor_DimensionType_Tensorflow:
        batch, height, width, channel = input_shape
    elif input_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
        batch, channel, height, width = input_shape
    else:
        # should be MNN.Tensor_DimensionType_Caffe_C4, unsupported now
        raise ValueError('unsupported input tensor dimension type')

    # prepare input image
    img = Image.open(image_file)
    image = np.array(img, dtype='uint8')
    image_data = preprocess_image(img, (height, width))
    image_shape = img.size

    # use a temp tensor to copy data
    tmp_input = MNN.Tensor(input_shape, input_tensor.getDataType(),\
                    image_data, input_tensor.getDimensionType())

    # predict once first to bypass the model building time
    input_tensor.copyFrom(tmp_input)
    interpreter.runSession(session)

    start = time.time()
    for i in range(loop_count):
        input_tensor.copyFrom(tmp_input)
        interpreter.runSession(session)
    end = time.time()
    print("Average Inference time: {:.8f}ms".format(
        (end - start) * 1000 / loop_count))

    out_list = []
    for output_tensor_name in output_tensor_names:
        output_tensor = interpreter.getSessionOutput(session,
                                                     output_tensor_name)
        output_shape = output_tensor.getShape()

        assert output_tensor.getDataType() == MNN.Halide_Type_Float

        # copy output tensor to host, for further postprocess
        tmp_output = MNN.Tensor(output_shape, output_tensor.getDataType(),\
                    np.zeros(output_shape, dtype=float), output_tensor.getDimensionType())

        output_tensor.copyToHostTensor(tmp_output)
        #tmp_output.printTensorData()

        output_data = np.array(tmp_output.getData(),
                               dtype=float).reshape(output_shape)
        # our postprocess code based on TF channel last format, so if the output format
        # doesn't match, we need to transpose
        if output_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
            output_data = output_data.transpose((0, 2, 3, 1))
        elif output_tensor.getDimensionType(
        ) == MNN.Tensor_DimensionType_Caffe_C4:
            raise ValueError('unsupported output tensor dimension type')

        out_list.append(output_data)

    start = time.time()
    predictions = yolo3_head(out_list,
                             anchors,
                             num_classes=len(class_names),
                             input_dims=(height, width))

    boxes, classes, scores = yolo3_handle_predictions(predictions,
                                                      confidence=0.1,
                                                      iou_threshold=0.4)
    boxes = yolo3_adjust_boxes(boxes, image_shape, (height, width))
    end = time.time()
    print("PostProcess time: {:.8f}ms".format((end - start) * 1000))

    print('Found {} boxes for {}'.format(len(boxes), image_file))

    for box, cls, score in zip(boxes, classes, scores):
        print("Class: {}, Score: {}".format(class_names[cls], score))

    colors = get_colors(class_names)
    image = draw_boxes(image, boxes, classes, scores, class_names, colors)

    Image.fromarray(image).show()
def validate_yolo_model_tflite(model_path, image_file, anchors, class_names,
                               loop_count):
    interpreter = interpreter_wrapper.Interpreter(model_path=model_path)
    interpreter.allocate_tensors()

    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    #print(input_details)
    #print(output_details)

    # check the type of the input tensor
    if input_details[0]['dtype'] == np.float32:
        floating_model = True

    img = Image.open(image_file)
    image = np.array(img, dtype='uint8')

    height = input_details[0]['shape'][1]
    width = input_details[0]['shape'][2]

    image_data = preprocess_image(img, (height, width))
    image_shape = img.size

    # predict once first to bypass the model building time
    interpreter.set_tensor(input_details[0]['index'], image_data)
    interpreter.invoke()

    start = time.time()
    for i in range(loop_count):
        interpreter.set_tensor(input_details[0]['index'], image_data)
        interpreter.invoke()
    end = time.time()
    print("Average Inference time: {:.8f}ms".format(
        (end - start) * 1000 / loop_count))

    out_list = []
    for output_detail in output_details:
        output_data = interpreter.get_tensor(output_detail['index'])
        out_list.append(output_data)

    start = time.time()
    predictions = yolo3_head(out_list,
                             anchors,
                             num_classes=len(class_names),
                             input_dims=(height, width))

    boxes, classes, scores = yolo3_handle_predictions(predictions,
                                                      confidence=0.1,
                                                      iou_threshold=0.4)
    boxes = yolo3_adjust_boxes(boxes, image_shape, (height, width))
    end = time.time()
    print("PostProcess time: {:.8f}ms".format((end - start) * 1000))

    print('Found {} boxes for {}'.format(len(boxes), image_file))

    for box, cls, score in zip(boxes, classes, scores):
        print("Class: {}, Score: {}".format(class_names[cls], score))

    colors = get_colors(class_names)
    image = draw_boxes(image, boxes, classes, scores, class_names, colors)

    Image.fromarray(image).show()
Esempio n. 5
0
def yolo_predict_mnn(interpreter, session, image, anchors, num_classes,
                     conf_threshold):
    from functools import reduce
    from operator import mul
    # TODO: currently MNN python API only support getting input/output tensor by default or
    # by name. so we need to hardcode the output tensor names here to get them from model
    if len(anchors) == 6:
        output_tensor_names = ['conv2d_1/Conv2D', 'conv2d_3/Conv2D']
    elif len(anchors) == 9:
        output_tensor_names = [
            'conv2d_3/Conv2D', 'conv2d_8/Conv2D', 'conv2d_13/Conv2D'
        ]
    else:
        raise ValueError('invalid anchor number')

    # assume only 1 input tensor for image
    input_tensor = interpreter.getSessionInput(session)
    # get input shape
    input_shape = input_tensor.getShape()
    if input_tensor.getDimensionType() == MNN.Tensor_DimensionType_Tensorflow:
        batch, height, width, channel = input_shape
    elif input_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
        batch, channel, height, width = input_shape
    else:
        # should be MNN.Tensor_DimensionType_Caffe_C4, unsupported now
        raise ValueError('unsupported input tensor dimension type')

    # prepare input image
    image_data = preprocess_image(image, (height, width))
    image_shape = image.size

    # use a temp tensor to copy data
    # TODO: currently MNN python binding have mem leak when creating MNN.Tensor
    # from numpy array, only from tuple is good. So we convert input image to tuple
    input_elementsize = reduce(mul, input_shape)
    tmp_input = MNN.Tensor(input_shape, input_tensor.getDataType(),\
                    tuple(image_data.reshape(input_elementsize, -1)), input_tensor.getDimensionType())

    input_tensor.copyFrom(tmp_input)
    interpreter.runSession(session)

    out_list = []
    for output_tensor_name in output_tensor_names:
        output_tensor = interpreter.getSessionOutput(session,
                                                     output_tensor_name)
        output_shape = output_tensor.getShape()

        assert output_tensor.getDataType() == MNN.Halide_Type_Float

        # copy output tensor to host, for further postprocess
        output_elementsize = reduce(mul, output_shape)
        tmp_output = MNN.Tensor(output_shape, output_tensor.getDataType(),\
                    tuple(np.zeros(output_shape, dtype=float).reshape(output_elementsize, -1)), output_tensor.getDimensionType())

        output_tensor.copyToHostTensor(tmp_output)
        #tmp_output.printTensorData()

        output_data = np.array(tmp_output.getData(),
                               dtype=float).reshape(output_shape)
        # our postprocess code based on TF channel last format, so if the output format
        # doesn't match, we need to transpose
        if output_tensor.getDimensionType() == MNN.Tensor_DimensionType_Caffe:
            output_data = output_data.transpose((0, 2, 3, 1))
        elif output_tensor.getDimensionType(
        ) == MNN.Tensor_DimensionType_Caffe_C4:
            raise ValueError('unsupported output tensor dimension type')

        out_list.append(output_data)

    predictions = yolo3_head(out_list,
                             anchors,
                             num_classes=num_classes,
                             input_dims=(height, width))

    boxes, classes, scores = yolo3_handle_predictions(
        predictions,
        max_boxes=100,
        confidence=conf_threshold,
        iou_threshold=0.4)
    boxes = adjust_boxes(boxes, image_shape, (height, width))

    return boxes, classes, scores