Esempio n. 1
0
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        self.yolo_model = load_model(model_path, custom_objects={'Mish': Mish}, compile=False)

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num>=2:
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score, iou_threshold=self.iou)
        return boxes, scores, classes
    def load_yolo(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        self.class_names = self.get_class()
        self.anchors = self.get_anchors()

        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        self.sess = K.get_session()

        # Load model, or construct model and load weights.
        self.yolo4_model = yolo4_body(Input(shape=(416, 416, 3)), num_anchors//3, num_classes)
        self.yolo4_model.load_weights(model_path)

        print('{} model, anchors, and classes loaded.'.format(model_path))

        if self.gpu_num>=2:
            self.yolo4_model = multi_gpu_model(self.yolo4_model, gpus=self.gpu_num)

        self.input_image_shape = K.placeholder(shape=(2, ))
        self.boxes, self.scores, self.classes = yolo_eval(self.yolo4_model.output, self.anchors,
                len(self.class_names), self.input_image_shape,
                score_threshold=self.score)
Esempio n. 3
0
    def _generate(self):
        print("_generate")
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        self.yolo_model = load_model(model_path,
                                     custom_objects={'Mish': Mish},
                                     compile=False)

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        colors = self._random_colors(len(CLASSES))

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes, colors
    def load_yolo(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'

        self.class_names = CLASSES
        self.anchors = np.array(anchors).reshape(-1, 2)

        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        self.sess = tf.compat.v1.Session()

        # Load model, or construct model and load weights.
        self.yolo4_model = yolo4_body(Input(shape=(self.input_size, self.input_size, 3)), num_anchors//3, num_classes)

        # Read and convert darknet weight
        self.load_weights(self.yolo4_model, self.weights_path)

        self.yolo4_model.save(self.model_path)

        self.input_image_shape = K.placeholder(shape=(2, ))
        self.boxes, self.scores, self.classes = yolo_eval(
            self.yolo4_model.output, 
            self.anchors, 
            len(self.class_names), 
            self.input_image_shape, 
            score_threshold=self.score
        )
        print('Dome.')
Esempio n. 5
0
    def generate(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        # Load model, or construct model and load weights.
        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)
        is_tiny_version = num_anchors == 6  # default setting
        try:
            self.yolo_model = load_model(model_path, compile=False)
        except:
            self.yolo_model = yolo4_body(Input(shape=(None, None, 3)),
                                         num_anchors // 3, num_classes)
            self.yolo_model.load_weights(
                self.model_path)  # make sure model, anchors and classes match
        else:
            assert self.yolo_model.layers[-1].output_shape[-1] == \
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
                'Mismatch between model and given anchor and class sizes'

        print('{} model, anchors, and classes loaded.'.format(model_path))

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
        np.random.shuffle(
            self.colors)  # Shuffle colors to decorrelate adjacent classes.
        np.random.seed(None)  # Reset seed to default.

        # Generate output tensor targets for filtered bounding boxes.
        self.input_image_shape = K.placeholder(shape=(2, ))
        if self.gpu_num >= 2:
            self.yolo_model = multi_gpu_model(self.yolo_model,
                                              gpus=self.gpu_num)
        boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                           self.anchors,
                                           len(self.class_names),
                                           self.input_image_shape,
                                           score_threshold=self.score,
                                           iou_threshold=self.iou)
        return boxes, scores, classes
Esempio n. 6
0
 def generate(self):
     model_path = os.path.expanduser(self.model_path)
     assert model_path.endswith('.h5'), 'Keras model must be a .h5 file.'
     self.yolo_model = load_model(model_path, compile=False)
     print('{} model, anchors, and classes loaded.'.format(model_path))
     # Generate colors for drawing bounding boxes.
     hsv_tuples = [(x / len(self.class_names), 1., 1.)
                   for x in range(len(self.class_names))]
     self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
     self.colors = list(
         map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
             self.colors))
     random.seed(10101)
     random.shuffle(self.colors)
     random.seed(None)
     # Generate output tensor targets for filtered bounding boxes.
     self.input_image_shape = K.placeholder(shape=(2, ))
     boxes, scores, classes = yolo_eval(self.yolo_model.output,
                                        self.anchors,
                                        len(self.class_names),
                                        self.input_image_shape,
                                        score_threshold=self.score,
                                        iou_threshold=self.iou)
     return boxes, scores, classes
Esempio n. 7
0
    def load_yolo(self):
        model_path = os.path.expanduser(self.model_path)
        assert model_path.endswith(
            '.h5'), 'Keras model or weights must be a .h5 file.'

        self.class_names = self.get_class()
        self.anchors = self.get_anchors()

        num_anchors = len(self.anchors)
        num_classes = len(self.class_names)

        # Generate colors for drawing bounding boxes.
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
                      for x in range(len(self.class_names))]
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
        self.colors = list(
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
                self.colors))

        self.sess = K.get_session()

        # Load model, or construct model and load weights.
        self.yolo4_model = yolo4_body(Input(shape=(608, 608, 3)),
                                      num_anchors // 3, num_classes)

        # Read and convert darknet weight
        print('Loading weights.')
        weights_file = open(self.weights_path, 'rb')
        major, minor, revision = np.ndarray(shape=(3, ),
                                            dtype='int32',
                                            buffer=weights_file.read(12))
        if (major * 10 + minor) >= 2 and major < 1000 and minor < 1000:
            seen = np.ndarray(shape=(1, ),
                              dtype='int64',
                              buffer=weights_file.read(8))
        else:
            seen = np.ndarray(shape=(1, ),
                              dtype='int32',
                              buffer=weights_file.read(4))
        print('Weights Header: ', major, minor, revision, seen)

        convs_to_load = []
        bns_to_load = []
        for i in range(len(self.yolo4_model.layers)):
            layer_name = self.yolo4_model.layers[i].name
            if layer_name.startswith('conv2d_'):
                convs_to_load.append((int(layer_name[7:]), i))
            if layer_name.startswith('batch_normalization_'):
                bns_to_load.append((int(layer_name[20:]), i))

        convs_sorted = sorted(convs_to_load, key=itemgetter(0))
        bns_sorted = sorted(bns_to_load, key=itemgetter(0))

        bn_index = 0
        for i in range(len(convs_sorted)):
            print('Converting ', i)
            if i == 93 or i == 101 or i == 109:
                #no bn, with bias
                weights_shape = self.yolo4_model.layers[
                    convs_sorted[i][1]].get_weights()[0].shape
                bias_shape = self.yolo4_model.layers[
                    convs_sorted[i][1]].get_weights()[0].shape[3]
                filters = bias_shape
                size = weights_shape[0]
                darknet_w_shape = (filters, weights_shape[2], size, size)
                weights_size = np.product(weights_shape)

                conv_bias = np.ndarray(shape=(filters, ),
                                       dtype='float32',
                                       buffer=weights_file.read(filters * 4))
                conv_weights = np.ndarray(shape=darknet_w_shape,
                                          dtype='float32',
                                          buffer=weights_file.read(
                                              weights_size * 4))
                conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
                self.yolo4_model.layers[convs_sorted[i][1]].set_weights(
                    [conv_weights, conv_bias])
            else:
                #with bn, no bias
                weights_shape = self.yolo4_model.layers[
                    convs_sorted[i][1]].get_weights()[0].shape
                size = weights_shape[0]
                bn_shape = self.yolo4_model.layers[bns_sorted[bn_index]
                                                   [1]].get_weights()[0].shape
                filters = bn_shape[0]
                darknet_w_shape = (filters, weights_shape[2], size, size)
                weights_size = np.product(weights_shape)

                conv_bias = np.ndarray(shape=(filters, ),
                                       dtype='float32',
                                       buffer=weights_file.read(filters * 4))
                bn_weights = np.ndarray(shape=(3, filters),
                                        dtype='float32',
                                        buffer=weights_file.read(filters * 12))

                bn_weight_list = [
                    bn_weights[0],  # scale gamma
                    conv_bias,  # shift beta
                    bn_weights[1],  # running mean
                    bn_weights[2]  # running var
                ]
                self.yolo4_model.layers[bns_sorted[bn_index][1]].set_weights(
                    bn_weight_list)

                conv_weights = np.ndarray(shape=darknet_w_shape,
                                          dtype='float32',
                                          buffer=weights_file.read(
                                              weights_size * 4))
                conv_weights = np.transpose(conv_weights, [2, 3, 1, 0])
                self.yolo4_model.layers[convs_sorted[i][1]].set_weights(
                    [conv_weights])

                bn_index += 1

        weights_file.close()

        self.yolo4_model.save(self.model_path)

        if self.gpu_num >= 2:
            self.yolo4_model = multi_gpu_model(self.yolo4_model,
                                               gpus=self.gpu_num)

        self.input_image_shape = K.placeholder(shape=(2, ))
        self.boxes, self.scores, self.classes = yolo_eval(
            self.yolo4_model.output,
            self.anchors,
            len(self.class_names),
            self.input_image_shape,
            score_threshold=self.score)