def custom(path_or_model='path/to/model.pt', autoshape=True): """YOLOv5-custom model from https://github.com/ultralytics/yolov5 Arguments (3 options): path_or_model (str): 'path/to/model.pt' path_or_model (dict): torch.load('path/to/model.pt') path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] Returns: pytorch model """ model = torch.load(path_or_model) if isinstance( path_or_model, str) else path_or_model # load checkpoint if isinstance(model, dict): model = model['ema' if model.get('ema') else 'model'] # load model hub_model = Model(model.yaml).to(next(model.parameters()).device) # create hub_model.load_state_dict(model.float().state_dict()) # load state_dict hub_model.names = model.names # class names if autoshape: hub_model = hub_model.autoshape( ) # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available return hub_model.to(device)
def create(name, pretrained, channels, classes, autoshape, verbose): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes Returns: pytorch model """ try: set_logging(verbose=verbose) cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path model = Model(cfg, channels, classes) if pretrained: fname = f'{name}.pt' # checkpoint filename attempt_download(fname) # download if not found locally ckpt = torch.load(fname, map_location=torch.device('cpu')) # load msd = model.state_dict() # model state_dict csd = ckpt['model'].float().state_dict( ) # checkpoint state_dict as FP32 csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter model.load_state_dict(csd, strict=False) # load if len(ckpt['model'].names) == classes: model.names = ckpt['model'].names # set class names attribute if autoshape: model = model.autoshape( ) # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available return model.to(device) except Exception as e: help_url = 'https://github.com/ultralytics/yolov5/issues/36' s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url raise Exception(s) from e
def custom(path_or_model="path/to/model.pt", autoshape=True): """YOLOv5-custom model from https://github.com/ultralytics/yolov5 Arguments (3 options): path_or_model (str): 'path/to/model.pt' path_or_model (dict): torch.load('path/to/model.pt') path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] Returns: pytorch model """ model = (torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model) # load checkpoint if isinstance(model, dict): model = model["model"] # load model hub_model = Model(model.yaml).to(next(model.parameters()).device) # create hub_model.load_state_dict(model.float().state_dict()) # load state_dict hub_model.names = model.names # class names return hub_model.autoshape() if autoshape else hub_model
def create(name, pretrained, channels, classes, autoshape): """Creates a specified YOLOv5 model Arguments: name (str): name of model, i.e. 'yolov5s' pretrained (bool): load pretrained weights into the model channels (int): number of input channels classes (int): number of model classes Returns: pytorch model """ config = Path( __file__).parent / "models" / f"{name}.yaml" # model.yaml path try: model = Model(config, channels, classes) if pretrained: fname = f"{name}.pt" # checkpoint filename attempt_download(fname) # download if not found locally ckpt = torch.load(fname, map_location=torch.device("cpu")) # load state_dict = ckpt["model"].float().state_dict() # to FP32 state_dict = { k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape } # filter model.load_state_dict(state_dict, strict=False) # load if len(ckpt["model"].names) == classes: model.names = ckpt["model"].names # set class names attribute if autoshape: model = model.autoshape( ) # for file/URI/PIL/cv2/np inputs and NMS return model except Exception as e: help_url = "https://github.com/ultralytics/yolov5/issues/36" s = ( "Cache maybe be out of date, try force_reload=True. See %s for help." % help_url) raise Exception(s) from e