Esempio n. 1
0
def custom(path_or_model='path/to/model.pt', autoshape=True):
    """YOLOv5-custom model from https://github.com/ultralytics/yolov5

    Arguments (3 options):
        path_or_model (str): 'path/to/model.pt'
        path_or_model (dict): torch.load('path/to/model.pt')
        path_or_model (nn.Module): torch.load('path/to/model.pt')['model']

    Returns:
        pytorch model
    """
    model = torch.load(path_or_model) if isinstance(
        path_or_model, str) else path_or_model  # load checkpoint
    if isinstance(model, dict):
        model = model['ema' if model.get('ema') else 'model']  # load model

    hub_model = Model(model.yaml).to(next(model.parameters()).device)  # create
    hub_model.load_state_dict(model.float().state_dict())  # load state_dict
    hub_model.names = model.names  # class names
    if autoshape:
        hub_model = hub_model.autoshape(
        )  # for file/URI/PIL/cv2/np inputs and NMS
    device = select_device('0' if torch.cuda.is_available() else
                           'cpu')  # default to GPU if available
    return hub_model.to(device)
Esempio n. 2
0
def create(name, pretrained, channels, classes, autoshape, verbose):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes

    Returns:
        pytorch model
    """
    try:
        set_logging(verbose=verbose)

        cfg = list((Path(__file__).parent /
                    'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
        model = Model(cfg, channels, classes)
        if pretrained:
            fname = f'{name}.pt'  # checkpoint filename
            attempt_download(fname)  # download if not found locally
            ckpt = torch.load(fname, map_location=torch.device('cpu'))  # load
            msd = model.state_dict()  # model state_dict
            csd = ckpt['model'].float().state_dict(
            )  # checkpoint state_dict as FP32
            csd = {k: v
                   for k, v in csd.items()
                   if msd[k].shape == v.shape}  # filter
            model.load_state_dict(csd, strict=False)  # load
            if len(ckpt['model'].names) == classes:
                model.names = ckpt['model'].names  # set class names attribute
            if autoshape:
                model = model.autoshape(
                )  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else
                               'cpu')  # default to GPU if available
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
        raise Exception(s) from e
Esempio n. 3
0
def custom(path_or_model="path/to/model.pt", autoshape=True):
    """YOLOv5-custom model from https://github.com/ultralytics/yolov5

    Arguments (3 options):
        path_or_model (str): 'path/to/model.pt'
        path_or_model (dict): torch.load('path/to/model.pt')
        path_or_model (nn.Module): torch.load('path/to/model.pt')['model']

    Returns:
        pytorch model
    """
    model = (torch.load(path_or_model) if isinstance(path_or_model, str) else
             path_or_model)  # load checkpoint
    if isinstance(model, dict):
        model = model["model"]  # load model

    hub_model = Model(model.yaml).to(next(model.parameters()).device)  # create
    hub_model.load_state_dict(model.float().state_dict())  # load state_dict
    hub_model.names = model.names  # class names
    return hub_model.autoshape() if autoshape else hub_model
Esempio n. 4
0
def create(name, pretrained, channels, classes, autoshape):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes

    Returns:
        pytorch model
    """
    config = Path(
        __file__).parent / "models" / f"{name}.yaml"  # model.yaml path
    try:
        model = Model(config, channels, classes)
        if pretrained:
            fname = f"{name}.pt"  # checkpoint filename
            attempt_download(fname)  # download if not found locally
            ckpt = torch.load(fname, map_location=torch.device("cpu"))  # load
            state_dict = ckpt["model"].float().state_dict()  # to FP32
            state_dict = {
                k: v
                for k, v in state_dict.items()
                if model.state_dict()[k].shape == v.shape
            }  # filter
            model.load_state_dict(state_dict, strict=False)  # load
            if len(ckpt["model"].names) == classes:
                model.names = ckpt["model"].names  # set class names attribute
            if autoshape:
                model = model.autoshape(
                )  # for file/URI/PIL/cv2/np inputs and NMS
        return model

    except Exception as e:
        help_url = "https://github.com/ultralytics/yolov5/issues/36"
        s = (
            "Cache maybe be out of date, try force_reload=True. See %s for help."
            % help_url)
        raise Exception(s) from e