Esempio n. 1
0
    def inference(self, img):
        img_info = {'id': 0}
        if isinstance(img, str):
            img_info['file_name'] = os.path.basename(img)
            img = cv2.imread(img)
        else:
            img_info['file_name'] = None

        height, width = img.shape[:2]
        img_info['height'] = height
        img_info['width'] = width
        img_info['raw_img'] = img

        img, ratio = preproc(img, self.test_size, self.rgb_means, self.std)
        img_info['ratio'] = ratio
        img = torch.from_numpy(img).unsqueeze(0).cuda()

        with torch.no_grad():
            t0 = time.time()
            outputs = self.model(img)
            if self.decoder is not None:
                outputs = self.decoder(outputs, dtype=outputs.type())
            outputs = postprocess(
                        outputs, self.num_classes, self.confthre, self.nmsthre
                    )
            logger.info('Infer time: {:.4f}s'.format(time.time()-t0))
        return outputs, img_info
Esempio n. 2
0
def yolox_inference(img, model, test_size): 
    print("yolox-infarenceファンクション")
    bboxes = []
    bbclasses = []
    scores = []
    
    preproc = ValTransform(legacy = False)

    tensor_img, _ = preproc(img, None, test_size)
    tensor_img = torch.from_numpy(tensor_img).unsqueeze(0)
    tensor_img = tensor_img.float()
    tensor_img = tensor_img#.cuda()

    with torch.no_grad():
        outputs = model(tensor_img)
        outputs = postprocess(
                    outputs, num_classes, confthre,
                    nmsthre, class_agnostic=True
                )

    if outputs[0] is None:
        return [], [], []
    
    outputs = outputs[0].cpu()
    bboxes = outputs[:, 0:4]

    bboxes /= min(test_size[0] / img.shape[0], test_size[1] / img.shape[1])
    bbclasses = outputs[:, 6]
    scores = outputs[:, 4] * outputs[:, 5]
    
    return bboxes, bbclasses, scores
Esempio n. 3
0
    def inference(self, img, timer):
        img_info = {"id": 0}
        if isinstance(img, str):
            img_info["file_name"] = osp.basename(img)
            img = cv2.imread(img)
        else:
            img_info["file_name"] = None

        height, width = img.shape[:2]
        img_info["height"] = height
        img_info["width"] = width
        img_info["raw_img"] = img

        img, ratio = preproc(img, self.test_size, self.rgb_means, self.std)
        img_info["ratio"] = ratio
        img = torch.from_numpy(img).unsqueeze(0).float().to(self.device)
        if self.fp16:
            img = img.half()  # to FP16

        with torch.no_grad():
            timer.tic()
            outputs = self.model(img)
            if self.decoder is not None:
                outputs = self.decoder(outputs, dtype=outputs.type())
            outputs = postprocess(outputs, self.num_classes, self.confthre,
                                  self.nmsthre)
            #logger.info("Infer time: {:.4f}s".format(time.time() - t0))
        return outputs, img_info
Esempio n. 4
0
 def forward(self, input_tensors):
     preds = self.model(input_tensors)
     if self.decoder is not None:
         preds = self.decoder(preds, dtype=preds.type())
     preds = postprocess(
         preds, self.num_classes, self.confthre,
         self.nmsthre, class_agnostic=True
     )
     return preds
Esempio n. 5
0
    def inference(self, img, visual=True, conf=0.5, logger_=True):
        img_info = {"id": 0}

        if isinstance(img, str):
            img_info["file_name"] = os.path.basename(img)
            img = cv2.imread(img)
        else:
            img_info["file_name"] = None

        img_info['img'] = img
        height, width = img.shape[:2]
        img_info["height"], img_info["width"], img_info[
            "img"] = height, width, img
        ratio = min(self.test_size[0] / img.shape[0],
                    self.test_size[1] / img.shape[1])
        img_info["ratio"] = ratio
        img, _ = self.preproc(img, None, self.test_size)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.float()

        if self.device == torch.device('cuda'):
            img = img.cuda()
            # img = img.half()  # to FP16

        with torch.no_grad():
            t0 = time.time()
            outputs = self.model(img)
            outputs = postprocess(outputs, self.exp.num_classes,
                                  self.exp.test_conf,
                                  self.exp.nmsthre)[0].cpu().numpy()

        img_info['boxes'] = outputs[:, 0:4] / ratio
        img_info['scores'] = outputs[:, 4] * outputs[:, 5]
        img_info['class_ids'] = outputs[:, 6]
        img_info['box_nums'] = outputs.shape[0]

        if visual:
            img_info['visual'] = vis2(img_info['img'], img_info['boxes'],
                                      img_info['scores'],
                                      img_info['class_ids'], conf,
                                      COCO_CLASSES)

        if logger_:
            logger.info("Infer time: {:.4f}s".format(time.time() - t0))
        return outputs, img_info
Esempio n. 6
0
    def inference(self, img):
        img_info = {"id": 0}
        if isinstance(img, str):
            img_info["file_name"] = os.path.basename(img)
            img = cv2.imread(img)
        else:
            img_info["file_name"] = None

        height, width = img.shape[:2]
        img_info["height"] = height
        img_info["width"] = width
        img_info["raw_img"] = img

        ratio = min(self.test_size[0] / img.shape[0],
                    self.test_size[1] / img.shape[1])
        img_info["ratio"] = ratio

        img, _ = self.preproc(img, None, self.test_size)
        img = torch.from_numpy(img).unsqueeze(0)
        img = img.float()
        if self.device == "gpu":
            img = img.cuda()
            if self.fp16:
                img = img.half()  # to FP16

        with torch.no_grad():
            t0 = time.time()
            outputs = self.model(img)
            if self.decoder is not None:
                outputs = self.decoder(outputs, dtype=outputs.type())
            outputs = postprocess(outputs,
                                  self.num_classes,
                                  self.confthre,
                                  self.nmsthre,
                                  class_agnostic=True)
            logger.info("Infer time: {:.4f}s".format(time.time() - t0))
        return outputs, img_info
    def evaluate(self,
                 model,
                 distributed=False,
                 half=False,
                 trt_file=None,
                 decoder=None,
                 test_size=None):
        """
        VOC average precision (AP) Evaluation. Iterate inference on the test dataset
        and the results are evaluated by COCO API.

        NOTE: This function will change training mode to False, please save states if needed.

        Args:
            model : model to evaluate.

        Returns:
            ap50_95 (float) : COCO style AP of IoU=50:95
            ap50 (float) : VOC 2007 metric AP of IoU=50
            summary (sr): summary info of evaluation.
        """
        # TODO half to amp_test
        tensor_type = torch.cuda.HalfTensor if half else torch.cuda.FloatTensor
        model = model.eval()
        if half:
            model = model.half()
        ids = []
        data_list = {}
        progress_bar = tqdm if is_main_process() else iter

        inference_time = 0
        nms_time = 0
        n_samples = len(self.dataloader) - 1

        if trt_file is not None:
            from torch2trt import TRTModule
            model_trt = TRTModule()
            model_trt.load_state_dict(torch.load(trt_file))

            x = torch.ones(1, 3, test_size[0], test_size[1]).cuda()
            model(x)
            model = model_trt

        for cur_iter, (imgs, _, info_imgs,
                       ids) in enumerate(progress_bar(self.dataloader)):
            with torch.no_grad():
                imgs = imgs.type(tensor_type)

                # skip the the last iters since batchsize might be not enough for batch inference
                is_time_record = cur_iter < len(self.dataloader) - 1
                if is_time_record:
                    start = time.time()

                outputs = model(imgs)
                if decoder is not None:
                    outputs = decoder(outputs, dtype=outputs.type())

                if is_time_record:
                    infer_end = time_synchronized()
                    inference_time += infer_end - start

                outputs = postprocess(outputs, self.num_classes, self.confthre,
                                      self.nmsthre)
                if is_time_record:
                    nms_end = time_synchronized()
                    nms_time += nms_end - infer_end

            data_list.update(
                self.convert_to_voc_format(outputs, info_imgs, ids))

        statistics = torch.cuda.FloatTensor(
            [inference_time, nms_time, n_samples])
        if distributed:
            data_list = gather(data_list, dst=0)
            data_list = ChainMap(*data_list)
            torch.distributed.reduce(statistics, dst=0)

        eval_results = self.evaluate_prediction(data_list, statistics)
        synchronize()
        return eval_results