Esempio n. 1
0
def test_clump_tree_save():
    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    ds = data_dir_load(i30)
    data_source = ds.disk([0.5, 0.5, 0.5], [0.0, 0.0, 1.0], (8, "kpc"),
                          (1, "kpc"))

    field = ("gas", "density")
    step = 2.0
    c_min = 10**np.floor(np.log10(data_source[field]).min())
    c_max = 10**np.floor(np.log10(data_source[field]).max() + 1)

    master_clump = Clump(data_source, field)
    master_clump.add_info_item("center_of_mass")
    master_clump.add_validator("min_cells", 20)

    find_clumps(master_clump, c_min, c_max, step)
    leaf_clumps = master_clump.leaves

    fn = master_clump.save_as_dataset(fields=[
        ("gas", "density"),
        ("index", "x"),
        ("index", "y"),
        ("index", "z"),
        ("all", "particle_mass"),
    ])
    ds2 = load(fn)

    # compare clumps in the tree
    t1 = [c for c in master_clump]
    t2 = [c for c in ds2.tree]
    mt1 = ds.arr([c.info["cell_mass"][1] for c in t1])
    mt2 = ds2.arr([c["clump", "cell_mass"] for c in t2])
    it1 = np.array(np.argsort(mt1).astype(int))
    it2 = np.array(np.argsort(mt2).astype(int))
    assert_array_equal(mt1[it1], mt2[it2])

    for i1, i2 in zip(it1, it2):
        ct1 = t1[i1]
        ct2 = t2[i2]
        assert_array_equal(ct1["gas", "density"], ct2["grid", "density"])
        assert_array_equal(ct1["all", "particle_mass"], ct2["all",
                                                            "particle_mass"])

    # compare leaf clumps
    c1 = [c for c in leaf_clumps]
    c2 = [c for c in ds2.leaves]
    mc1 = ds.arr([c.info["cell_mass"][1] for c in c1])
    mc2 = ds2.arr([c["clump", "cell_mass"] for c in c2])
    ic1 = np.array(np.argsort(mc1).astype(int))
    ic2 = np.array(np.argsort(mc2).astype(int))
    assert_array_equal(mc1[ic1], mc2[ic2])

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Esempio n. 2
0
class ClumpFinder:
    def __init__(self, max_level, label="", file_cache=True):
        if not os.path.exists(CUBE_DIR):
            os.makedirs(CUBE_DIR)
        if not os.path.exists(PLOT_DIR):
            os.makedirs(PLOT_DIR)
        if not os.path.exists(CLUMP_DIR):
            os.makedirs(CLUMP_DIR)

        self._cube_data = {}
        self._ramses_ds = None
        self._cube_ds = None
        self._disk = None
        self._master_clump = None
        self._leaf_clumps = None
        self._clump_quantities = None
        self._molecular_clouds = None

        self.max_level = int(max_level)
        self.file_cache = file_cache
        if label:
            self.label = label
        else:
            self.label = max_level

    @property
    def ramses_ds(self):
        if not self._ramses_ds:
            self._ramses_ds = yt.load(RAMSES_INPUT_INFO)
        return self._ramses_ds

    def cube_data(self, sim_type):
        if not sim_type in self._cube_data:
            self._cube_data[sim_type] = RamsesData(
                idir=RAMSES_INPUT_DIR,
                sim_type=sim_type,
                xmin=GALAXY_CENTRE[0] - CUBE_PADDING,
                xmax=GALAXY_CENTRE[0] + CUBE_PADDING,
                ymin=GALAXY_CENTRE[1] - CUBE_PADDING,
                ymax=GALAXY_CENTRE[1] + CUBE_PADDING,
                zmin=GALAXY_CENTRE[2] - CUBE_PADDING,
                zmax=GALAXY_CENTRE[2] + CUBE_PADDING,
                lmax=self.max_level,
                save_dir=CUBE_DIR,
                use_file_cache=self.file_cache,
            )
        return self._cube_data[sim_type]

    @property
    def cube_ds(self):
        if not self._cube_ds:
            self._cube_ds = yt.load_uniform_grid(
                dict(
                    density=self.cube_data(SimTypes.DENSITY).cube,
                    velocity_x=self.cube_data(SimTypes.X_VELOCITY).cube,
                    velocity_y=self.cube_data(SimTypes.Y_VELOCITY).cube,
                    velocity_z=self.cube_data(SimTypes.Z_VELOCITY).cube,
                    pressure=self.cube_data(SimTypes.PRESSURE).cube,
                ),
                self.cube_data(SimTypes.DENSITY).cube.shape,
                # TODO: Fix scaling. Doesn't find many clumps with this enabled.
                #length_unit=self.ramses_ds.length_unit/512,#3080*6.02,
            )
        return self._cube_ds

    @property
    def disk(self):
        if not self._disk:
            self._disk = self.cube_ds.disk(
                GALAXY_CENTRE,
                [0., 0., 1.],
                (1, 'kpc'),
                (0.5, 'kpc'),
            )
        return self._disk

    @property
    def master_clump(self):
        if not self._master_clump:
            clump_file = os.path.join(CLUMP_DIR,
                                      '{}_clumps.h5'.format(self.max_level))
            # TODO: Fix file format -- saved dataset loses attributes/isn't
            # loaded as the right type
            orig_file_cache = self.file_cache
            self.file_cache = False
            if self.file_cache and os.path.isfile(clump_file):
                self._master_clump = yt.load(clump_file)
            else:
                self._master_clump = Clump(self.disk, ('gas', "density"))
                find_clumps(
                    clump=self._master_clump,
                    min_val=self.disk["density"].min(),
                    max_val=self.disk["density"].max(),
                    d_clump=8.0,  # Step size
                )
                if self.file_cache:
                    self._master_clump.save_as_dataset(clump_file, [
                        'density',
                    ])
            self.file_cache = orig_file_cache
        return self._master_clump

    @property
    def leaf_clumps(self):
        if not self._leaf_clumps:
            self._leaf_clumps = self.master_clump.leaves
        return self._leaf_clumps

    @property
    def clump_quantities(self):
        if not self._clump_quantities:
            self._clump_quantities = []
            for clump in self.leaf_clumps:
                self._clump_quantities.append({
                    'clump':
                    clump,
                    'volume':
                    clump.data.volume().to_value(),
                    'mass':
                    clump.data.quantities.total_mass().to_value()[0],
                    'velocity_x_mean':
                    clump.data['velocity_x'].mean(),
                    'velocity_y_mean':
                    clump.data['velocity_y'].mean(),
                    'velocity_z_mean':
                    clump.data['velocity_z'].mean(),
                    'velocity_x_var':
                    clump.data['velocity_x'].var(),
                    'velocity_y_var':
                    clump.data['velocity_y'].var(),
                    'velocity_z_var':
                    clump.data['velocity_z'].var(),
                    'pressure_mean':
                    clump.data['pressure'].mean(),
                })
                self._clump_quantities[-1]['density'] = (
                    self._clump_quantities[-1]['mass'] /
                    self._clump_quantities[-1]['volume'])
                (
                    self._clump_quantities[-1]['bulk_velocity_0'],
                    self._clump_quantities[-1]['bulk_velocity_1'],
                    self._clump_quantities[-1]['bulk_velocity_2'],
                ) = clump.quantities.bulk_velocity().to_value()
        return self._clump_quantities

    @property
    def molecular_clouds(self):
        if not self._molecular_clouds:
            self._molecular_clouds = [
                cq for cq in self.clump_quantities
                if cq['density'] >= CLOUD_DENSITY_THRESHOLD
            ]
        return self._molecular_clouds
Esempio n. 3
0
# Now find get our 'base' clump -- this one just covers the whole domain.
master_clump = Clump(data_source, field)

# Add a "validator" to weed out clumps with less than 20 cells.
# As many validators can be added as you want.
master_clump.add_validator("min_cells", 20)

# Calculate center of mass for all clumps.
master_clump.add_info_item("center_of_mass")

# Begin clump finding.
find_clumps(master_clump, c_min, c_max, step)

# Save the clump tree as a reloadable dataset
fn = master_clump.save_as_dataset(fields=[("gas",
                                           "density"), ("all",
                                                        "particle_mass")])

# We can traverse the clump hierarchy to get a list of all of the 'leaf' clumps
leaf_clumps = master_clump.leaves

# Get total cell and particle masses for each leaf clump
leaf_masses = [leaf.quantities.total_mass() for leaf in leaf_clumps]

# If you'd like to visualize these clumps, a list of clumps can be supplied to
# the "clumps" callback on a plot.  First, we create a projection plot:
prj = yt.ProjectionPlot(ds, 2, field, center="c", width=(20, "kpc"))

# Next we annotate the plot with contours on the borders of the clumps
prj.annotate_clumps(leaf_clumps)
Esempio n. 4
0
# Now find get our 'base' clump -- this one just covers the whole domain.
master_clump = Clump(data_source, field)

# Add a "validator" to weed out clumps with less than 20 cells.
# As many validators can be added as you want.
master_clump.add_validator("min_cells", 20)

# Calculate center of mass for all clumps.
master_clump.add_info_item("center_of_mass")

# Begin clump finding.
find_clumps(master_clump, c_min, c_max, step)

# Save the clump tree as a reloadable dataset
fn = master_clump.save_as_dataset(fields=["density", "particle_mass"])

# We can traverse the clump hierarchy to get a list of all of the 'leaf' clumps
leaf_clumps = master_clump.leaves

# Get total cell and particle masses for each leaf clump
leaf_masses = [leaf.quantities.total_mass() for leaf in leaf_clumps]

# If you'd like to visualize these clumps, a list of clumps can be supplied to
# the "clumps" callback on a plot.  First, we create a projection plot:
prj = yt.ProjectionPlot(ds, 2, field, center="c", width=(20, "kpc"))

# Next we annotate the plot with contours on the borders of the clumps
prj.annotate_clumps(leaf_clumps)

# Save the plot to disk.
Esempio n. 5
0
    output_dir = "clumps/"
    ensure_dir(output_dir)

    master_clump.add_validator("future_bound",
                               use_thermal_energy=True,
                               truncate=True,
                               include_cooling=True)

    master_clump.add_info_item("center_of_mass")
    master_clump.add_info_item("min_number_density")
    master_clump.add_info_item("max_number_density")
    master_clump.add_info_item("jeans_mass")

    find_clumps(master_clump, c_min, c_max, step)

    fn = master_clump.save_as_dataset(filename=output_dir,
                                      fields=["density", "particle_mass"])

    leaf_clumps = master_clump.leaves
    pdir = os.path.join(output_dir, 'projections')
    ensure_dir(pdir)
    inner_radius = ds.quan(100, 'AU')

    units = 'pc'
    for i, sphere in enumerate(
            iterate_center_of_mass(data_source,
                                   inner_radius,
                                   com_kwargs={
                                       'use_gas': True,
                                       'use_particles': True
                                   })):
        width = 2 * sphere.radius