Esempio n. 1
0
        def expt_rules():
            rules = collections.deque()
            solver = z3.Solver()
            solver.set('arith.nl', False)
            solver.add(hyps)

            def show(p):
                report('trying to show(', p, '):')
                report('  hypotheses = ', solver)
                solver.push()
                solver.add(z3.Not(p))
                outcome = solver.check()
                s1 = '  the negation is ' + str(outcome)
                if (outcome == z3.unsat):
                    report(s1, "; therefore the original claim is valid")
                elif (outcome == z3.sat):
                    report(s1, "\n  here's a counter-example to ", p, "\n  ",
                           solver.model())
                elif (outcome == z3.unknown):
                    report(s1, "; therefore, the original claim is undecided")
                else:
                    report(s1, "; how'd that happen?")
                solver.pop()
                return outcome == z3.unsat

            def add_rule(p):
                report('add_rule(', p, ')')
                rules.append(p)
                solver.add(p)

            while (len(workQ) > 0):
                v = workQ.pop()
                x = v.children()[0]
                n = v.children()[1]

                report('rewriting expt(', x, ', ', n, ')')

                # Many of the rules below should have guards to ensure that we don't
                # accidentally say expt(x, n) is defined when x==0 and n < 0.
                # Rather that figuring out # all of the corner cases, I first check to
                # see if (x == 0) and (n < 0) is satisfiable.  If so, this code just
                # throws an exception.  I could probably work out a better error message
                # later.
                #   Now that we know that expt(x, n) is well-defined, we still need to be careful.
                # Consider expt(x, n+m) where x==0, n==3, and m==(-2).  In this case, expt(x, n+m)
                # is well-defined, but we can't conclude:
                #    expt(x, n+m) == expt(x, n) * expt(x, m)
                # Rather than working out lots of side conditions (and probably making a mistake),
                # I just check to see if implies(hyps, x > 0), and then plunge ahead without fear.
                # Of course, this means I don't generate all of the rules that I could, but I'll
                # do that later if this simple version turns out to be useful.

                def expt_rewrite_const(x2, n2):
                    if (n2 == 0): return z3.intVal(1)
                    elif ((0 < n2) and (n2 <= self.maxPowExpand)):
                        add_rule(v == prod(map(lambda _: x2, range(n2))))
                    elif ((-self.maxPowExpand <= n2) and (n2 < 0)):
                        add_rule(v * prod(map(lambda _: x2, range(-n2))) == 1)

                if (not show(z3.Or(x != 0, n >= 0))):
                    raise ExptRewriteFailure(
                        'possible attempt to raise 0 to a negative power')

                x_is_pos = show(x > 0)
                x_is_nz = x_is_pos or show(x != 0)
                x_is_z = (not x_is_nz) and show(x == 0)

                n_is_pos = show(n > 0)
                n_is_neg = (not n_is_pos) and show(n < 0)
                n_is_z = (not n_is_pos) and (not n_is_neg) and show(n == 0)

                if (n_is_z or x_is_z):
                    if (n_is_z): add_rule(v == 1)
                    elif (n_is_pos): add_rule(v == 0)
                    else: add_rule(v == z3.If(n == 0, 1, 0))
                    continue
                elif (x_is_pos):
                    x_lt_1 = show(x < 1)
                    x_gt_1 = (not x_lt_1) and show(x > 1)
                    if ((not x_lt_1) and (not x_gt_1) and show(x == 1)):
                        add_rule(v == 1)
                        continue
                    add_rule(v > 0)
                else:
                    add_rule(z3.Implies(x > 0, v > 0))
                    if (x_is_nz): add_rule(z != 0)
                    else: add_rule(z3.Implies(z3.Or(x != 0, n == 0), v != 0))

                if ((x.decl().name() == '*')
                        and (len(x.children()) > 1)):  # expt(x0*x1*..., n)
                    add_rule(v == prod(map(lambda y: xpt(y, n), x.children())))
                elif ((n.decl().name() == '+')
                      and (len(n.children()) > 1)):  # expt(x, n0+n1+...)
                    add_rule(v == prod(map(lambda m: xpt(x, m), n.children())))
                elif (n.decl().name() == '-'):
                    nn = n.children()
                    if (len(nn) == 0): pass  # a variable named '-'
                    elif (len(nn) == 1):  # expt(x, -n)
                        add_rule(z3.Implies(x != 0, v * xpt(x, nn[0]) == 1))
                    elif (len(nn) == 2):  # expt(x, n-m)
                        add_rule(
                            z3.Implies(x != 0,
                                       v * xpt(x, nn[1]) == xpt(x, nn[0])))
                    else:
                        RewriteExptFailure(
                            "unexpected: '-' expression with more than two children"
                        )
                elif (n.decl().name() == '*'):  # expt(x, n0*n1*...)
                    # check to see if n0 is integer constants and not "too big".
                    # if so, replace it with repeated multiplication
                    nn = n.children()
                    if ((len(nn) > 0) and not (longVal(nn[0]) is None)):
                        if (len(nn) == 1): ex = x
                        else: ex = xpt(x, prod(nn[1:]))
                        expt_rewrite_const(ex, longVal(nn[0]))
                elif (not (longVal(n) is None)):
                    expt_rewrite_const(x, longVal(n))
                else:  # we can't think of a way to simplify it
                    if (x_lt_1 or x_gt_1):
                        if (n_is_pos or n_is_neg): pass
                        else: add_rule(z3.Implies(n == 0, v == 1))
                    else:
                        if (n_is_pos or n_is_neg):
                            add_rule(z3.Implies(x == 1, v == 1))
                        else:
                            add_rule(z3.Implies(z3.Or(x == 1, n == 0), v == 1))
                    if (x_is_pos):
                        if (x_lt_1):
                            if (n_is_pos): add_rule(v <= x)
                            elif (n_is_neg): add_rule(v * x >= 1)
                            else:
                                add_rule(
                                    z3.And(z3.Implies(n > 0, v <= x),
                                           z3.Implies(n < 0, v * x >= 1)))
                        elif (x_gt_1):
                            if (n_is_pos): add_rule(v >= x)
                            elif (n_is_neg): add_rule(v * x <= 1)
                            else:
                                add_rule(
                                    z3.And(z3.Implies(n > 0, v >= x),
                                           z3.Implies(n < 0, v * x <= 1)))
                        else:
                            add_rule(
                                z3.And(
                                    z3.Implies(z3.And(x < 1, n > 0), v <= x),
                                    z3.Implies(z3.And(x < 1, n < 0),
                                               v * x >= 1),
                                    z3.Implies(z3.And(x > 1, n > 0), v >= x),
                                    z3.Implies(z3.And(x > 1, n < 0),
                                               v * x <= 1)))
            return rules
Esempio n. 2
0
 def __init__(self):
     self._s = z3.Solver()
Esempio n. 3
0
import os
import z3

f = open("graph1.txt", "r")
n = int((f.readline()).split()[0])
rest = f.read()
lines = rest.splitlines()
edges = [tuple(map(int, line.split())) for line in lines]

colors = range(0, 3)
color_names = ["Blue", "Green", "Red"]
#number of nodes times the number of colors
nvars = n * len(colors)
vars = [None] * nvars

solver = z3.Solver()


def varnum(i, j):
    assert (i in range(0, n) and j in colors)
    return len(colors) * i + j


# define variables
for i in range(0, n):
    for j in colors:
        vars[varnum(i, j)] = z3.Bool("x" + str(varnum(i, j)))


def exactly_one_of(literals):
Esempio n. 4
0
def clauses_sat(clauses1):
    """True if clauses1 imply clauses2.
    """
    s = z3.Solver()
    s.add(clauses_to_z3(clauses1))
    return s.check() != z3.unsat
Esempio n. 5
0
 def mk(cls, using_nla, myseed=None):
     return z3.Solver()
Esempio n. 6
0
    def solve(self, goal, lemmas=None):
        """
        Primary function of the NPSolver class. Attempts to prove the goal with respect to given lemmas and the theory
        defined by the AnnotatedContext in self.annctx.  
        :param goal: z3.BoolRef  
        :param lemmas: set of z3.BoolRef  
        :return: NPSolution  
        """
        z3.set_param('smt.random_seed', 0)
        z3.set_param('sat.random_seed', 0)
        # TODO: check that the given lemmas are legitimate bound formula instances with their formal parameters from
        #  the foreground sort.
        options = self.options
        # Make recursive definition unfoldings
        recdefs = get_recursive_definition(None,
                                           alldefs=True,
                                           annctx=self.annctx)
        recdef_unfoldings = make_recdef_unfoldings(recdefs)
        # Sometimes we don't need the unfoldings indexed by recdefs
        untagged_unfoldings = set(recdef_unfoldings.values())
        # Add them to the set of axioms and lemmas to instantiate
        axioms = get_all_axioms(self.annctx)
        if lemmas is None:
            lemmas = set()
        else:
            # Check that each bound parameter in all the lemmas are of the foreground sort
            for lemma in lemmas:
                bound_vars, lemma_body = lemma
                if not all(
                        is_expr_fg_sort(bound_var, annctx=self.annctx)
                        for bound_var in bound_vars):
                    raise TypeError(
                        'Bound variables of lemma: {} must be of the foreground sort'
                        .format(lemma_body))
        recdef_indexed_lemmas = _sort_by_trigger(
            lemmas, list(recdef_unfoldings.keys()))

        if options.instantiation_mode == proveroptions.lean_instantiation_with_lemmas:
            # Recdefs and lemmas need to be treated separately using 'lean' instantiation
            fo_abstractions = axioms
        if options.instantiation_mode == proveroptions.lean_instantiation:
            # Recdefs need to be treated separately using 'lean' instantiation
            fo_abstractions = axioms | lemmas
        else:
            # If the instantiation isn't the 'lean' kind then all defs are going to be instantiated with all terms
            fo_abstractions = axioms | untagged_unfoldings | lemmas

        # All parameters have been set appropriately. Begin constructing instantiations
        # Negate the goal
        neg_goal = z3.Not(goal)
        # Create a solver object and add the goal negation to it
        z3solver = z3.Solver()
        z3solver.add(neg_goal)
        # Keep track of terms in the quantifier-free problem given to the solver
        initial_terms = get_foreground_terms(neg_goal, annctx=self.annctx)
        extraction_terms = initial_terms
        recdef_application_terms = get_recdef_applications(neg_goal,
                                                           annctx=self.annctx)
        instantiation_terms = set()
        # Instantiate and check for provability according to options
        # Handle manual instantiation mode first
        if options.instantiation_mode == proveroptions.manual_instantiation:
            terms_to_instantiate = options.terms_to_instantiate
            instantiations = instantiate(fo_abstractions, terms_to_instantiate)
            if instantiations != set():
                instantiation_terms = terms_to_instantiate
                extraction_terms = extraction_terms.union(
                    get_foreground_terms(instantiations, annctx=self.annctx))
            z3solver.add(instantiations)
            if_sat = _solver_check(z3solver)
            model = z3solver.model() if if_sat else None
            return NPSolution(if_sat=if_sat,
                              model=model,
                              extraction_terms=extraction_terms,
                              instantiation_terms=instantiation_terms,
                              options=options)
        # Automatic instantiation modes
        # stratified instantiation strategy
        if options.instantiation_mode == proveroptions.depth_one_stratified_instantiation:
            conservative_fo_abstractions = axioms | untagged_unfoldings
            tracked_instantiations = instantiate(conservative_fo_abstractions,
                                                 initial_terms)
            if tracked_instantiations != set():
                instantiation_terms = initial_terms
                tracked_terms = get_foreground_terms(tracked_instantiations,
                                                     annctx=self.annctx)
                extraction_terms = extraction_terms.union(tracked_terms)
            z3solver.add(tracked_instantiations)
            untracked_instantiations = instantiate(lemmas, extraction_terms)
            if untracked_instantiations != set():
                instantiation_terms = instantiation_terms.union(
                    extraction_terms)
                untracked_terms = get_foreground_terms(
                    untracked_instantiations, annctx=self.annctx)
                extraction_terms = extraction_terms.union(untracked_terms)
            other_instantiations = instantiate(conservative_fo_abstractions,
                                               extraction_terms)
            z3solver.add(untracked_instantiations)
            z3solver.add(other_instantiations)
            if_sat = _solver_check(z3solver)
            model = z3solver.model() if if_sat else None
            return NPSolution(if_sat=if_sat,
                              model=model,
                              extraction_terms=extraction_terms,
                              instantiation_terms=instantiation_terms,
                              options=options)
        # Set up initial values of variables
        depth_counter = 0
        # Keep track of formulae produced by instantiation
        instantiations = set()
        # When the instantiation mode is infinite we realistically can't exceed 10^3 instantiations anyway
        target_depth = 1000 if options.instantiation_mode == proveroptions.infinite_depth else options.depth
        while depth_counter < target_depth:
            # Try to prove with available instantiations
            z3solver.add(instantiations)
            # If the instantiation mode is fixed depth we can continue instantiating until we get to that depth
            if options.instantiation_mode != proveroptions.fixed_depth:
                # Otherwise check satisfiability with current state of instantiations
                if_sat = _solver_check(z3solver)
                # If unsat, stop and return NPSolution instance
                if not if_sat:
                    return NPSolution(if_sat=if_sat,
                                      model=None,
                                      extraction_terms=extraction_terms,
                                      instantiation_terms=instantiation_terms,
                                      depth=depth_counter,
                                      options=options)
            # target depth not reached or unsat not reached
            # Do another round of instantiations.
            # TODO: optimise instantiations so repeated instantiation is not done. Currently all instantiations
            #  are done in every round. But optimisation is difficult in the presence of multiple arities.
            instantiation_terms = extraction_terms
            # Instantiate all basic abstractions
            instantiations = instantiate(fo_abstractions, instantiation_terms)
            # Instantiate other abstractions depending on instantiation mode. Typically recdefs and lemmas
            if options.instantiation_mode in {
                    proveroptions.lean_instantiation,
                    proveroptions.lean_instantiation_with_lemmas
            }:
                # Add recursive definition instantiations to the set of all instantiations
                for recdef, application_terms in recdef_application_terms.items(
                ):
                    lean_instantiations = instantiate(
                        recdef_unfoldings[recdef], application_terms)
                    instantiations.update(lean_instantiations)
            if options.instantiation_mode == proveroptions.lean_instantiation_with_lemmas:
                # Add lemma instantiations to the set of all instantiations
                for recdef, application_terms in recdef_application_terms.items(
                ):
                    triggered_lemmas = recdef_indexed_lemmas.get(recdef, [])
                    triggered_instantiations = instantiate(
                        triggered_lemmas, application_terms)
                    instantiations.update(triggered_instantiations)
            # If the set of instantiations is empty exit the loop
            if instantiations == set():
                instantiation_terms = set()
                break
            # Update the variables for the next round
            depth_counter = depth_counter + 1
            new_terms = get_foreground_terms(instantiations,
                                             annctx=self.annctx)
            recdef_application_terms = get_recdef_applications(
                instantiations, annctx=self.annctx)
            extraction_terms = extraction_terms.union(new_terms)
        # Reach this case when depth_counter = target depth, either in fixed_depth or bounded_depth mode.
        # Final attempt at proving goal
        z3solver.add(instantiations)
        if_sat = _solver_check(z3solver)
        model = z3solver.model() if if_sat else None
        return NPSolution(if_sat=if_sat,
                          model=model,
                          extraction_terms=extraction_terms,
                          instantiation_terms=instantiation_terms,
                          depth=depth_counter,
                          options=options)
Esempio n. 7
0
def get_small_model(clauses,
                    sorts_to_minimize,
                    relations_to_minimize,
                    final_cond=None,
                    shrink=True):
    """
    Return a HerbrandModel with a "small" model of clauses.

    sorts_to_minimize is a list of sorts, and relations_to_minimize is
    a list of relations,

    The model minimization occurs in 2 ways:

    First, minimize universe size lexicographically according to the order of
    sorts_to_minimize.

    Second, minimize the number of positive entries in the relations
    according to the order of relations_to_minimize.

    The parameter final_cond can be a list of objects have the following interface:

        cond():  returns a final condition as a clauses object
        start(): called before starting
        sat(): called if sat, return True if should ignore result
        unsat() : called if unsat
        assume() : if returns true, assume rather than check

    """
    s = z3.Solver()
    s.add(clauses_to_z3(clauses))

    # res = decide(s)
    # if res == z3.unsat:
    #     return None

    if final_cond is not None:
        if isinstance(final_cond, list):
            res = z3.unsat
            for fc in final_cond:
                fc.start()
                if fc.assume():
                    s.add(clauses_to_z3(fc.cond()))
                else:
                    s.push()
                    s.add(clauses_to_z3(fc.cond()))
                    res = decide(s)
                    if res != z3.unsat:
                        if fc.sat():
                            res = z3.unsat
                        else:
                            break
                    else:
                        fc.unsat()
                    s.pop()
        else:
            s.add(clauses_to_z3(final_cond))
            res = decide(s)
    else:
        res = decide(s)
    if res == z3.unsat:
        return None

    if shrink:
        print "searching for a small model...",
        sys.stdout.flush()
        for x in chain(sorts_to_minimize, relations_to_minimize):
            for n in itertools.count(1):
                s.push()
                sc = size_constraint(x, n)
                s.add(formula_to_z3(sc))
                res = decide(s)
                if res == z3.sat:
                    break
                else:
                    s.pop()
        print "done"
    m = get_model(s)
    #    print "model = {}".format(m)
    #    f = open("ivy.smt2","w")
    #    f.write(s.to_smt2())
    #    f.close()
    h = HerbrandModel(s, m, used_symbols_clauses(clauses))
    return h
Esempio n. 8
0
    def __init__(self,
                 spec: TyrellSpec,
                 loc=None,
                 sym_breaker=False,
                 break_sym_online=False):

        self.z3_solver = z3.Solver()

        self.z3_solver.set('random_seed', 7)
        self.z3_solver.set('sat.random_seed', 7)

        # productions that are leaves
        self.leaf_productions = []

        self.line_productions = []

        # for learning
        self.program2tree = {}

        # z3 variables for each production node
        self.variables = []
        self.spec = spec
        self.num_constraints = 0
        self.num_variables = 0
        self.sym_breaker = sym_breaker
        self.break_sym_online = break_sym_online
        if loc <= 0:
            raise ValueError(f'LOC cannot be non-positive: {loc}')
        self.start_time = time.time()
        self.loc = loc

        self.parentId = dict()
        if self.sym_breaker:
            if self.loc > 2:
                root = Node(1)
                root.h = 1
                id, tree = self.create_clean_tree(1, root)
                tree.insert(0, root)
                self.cleanedTree = tree
                self.symFinder = SymmetryFinder(self.loc)

            self.lattices = dict()
            if self.loc > 2 and not self.break_sym_online:
                self.find_lattices()

        self.cleanedModel = dict()
        self.num_prods = self.spec.num_productions()
        self.max_children = self.max_children()
        self.find_types()
        self.init_leaf_productions()
        self.init_line_productions()
        self.linesVars = []
        self.typeVars = []
        self.line_vars_by_line = defaultdict(list)
        self.roots, self.leafs = self.build_trees()
        self.model = None
        # Times
        self.symTime = 0
        self.totalSymTime = 0
        self.solverTime = 0
        self.blockedModels = 0
        self.totalBlockedModels = 0

        self.modelConstraint = 0
        self.create_output_constraints()
        self.create_lines_constraints()
        self.create_type_constraints()
        self.create_children_constraints()
        self._production_id_cache = defaultdict(set)
        for p in self.spec.productions():
            if p.is_enum():
                self._production_id_cache[p._get_rhs()].add(p.id)
        self.resolve_predicates(self.spec.predicates())
        logger.info('Number of Nodes: {} '.format(len(self.roots +
                                                      self.leafs)))
        logger.info('Number of Variables: {}'.format(
            len(self.variables + self.typeVars + self.linesVars)))
        logger.info('Number of Constraints: {}'.format(self.num_constraints))
        logger.info('Time spent encoding: {}'.format(time.time() -
                                                     self.start_time))
        res = self.z3_solver.check()
        if res != z3.sat:
            logger.warning(
                f"There is no solution for current loc ({self.loc}).")
            return
        self.model = self.z3_solver.model()
        self.get_model_constraint()
Esempio n. 9
0
 def __init__(self, eqns=None):
     self.eqns = []
     self.locs = []
     self.solver = z3.Solver()
     if eqns: self.add(eqns)
     self._ctr = 0
Esempio n. 10
0
File: script.py Progetto: Gdasl/CTFs
def getString(tar):
    v1 = z3.BitVec('v1', 32)
    v2 = z3.BitVec('v2', 32)
    v3 = z3.BitVec('v3', 32)

    s = z3.Solver()
    lol = "BCDGPTVZ"

    tar0 = lol.index(tar[0])
    tar1 = lol.index(tar[1])
    tar2 = lol.index(tar[2])
    tar3 = lol.index(tar[3])
    tar4 = lol.index(tar[4])
    tar5 = lol.index(tar[5])
    tar6 = lol.index(tar[6])
    tar7 = lol.index(tar[7])
    tar8 = lol.index(tar[8])
    tar9 = lol.index(tar[9])
    tar10 = lol.index(tar[10])
    tar11 = lol.index(tar[11])
    tar12 = lol.index(tar[12])
    tar13 = lol.index(tar[13])
    tar14 = lol.index(tar[14])
    tar15 = lol.index(tar[15])
    tar16 = lol.index(tar[16])
    tar17 = lol.index(tar[17])
    tar18 = lol.index(tar[18])
    tar19 = lol.index(tar[19])
    tar20 = lol.index(tar[20])
    tar21 = lol.index(tar[21])
    tar22 = lol.index(tar[22])
    tar23 = lol.index(tar[23])
    tar24 = lol.index(tar[24])
    tar25 = lol.index(tar[25])
    tar26 = lol.index(tar[26])
    tar27 = lol.index(tar[27])
    tar28 = lol.index(tar[28])
    tar29 = lol.index(tar[29])
    tar30 = lol.index(tar[30])
    tar31 = lol.index(tar[31])

    s.add(v2 >> 0x1F & 0x1 | v3 >> 0x0 & 0x3 == tar0)
    s.add(v1 >> 0x09 & 0x7 == tar1)
    s.add(v3 >> 0x05 & 0x7 == tar2)
    s.add(v3 >> 0x08 & 0x7 == tar3)
    s.add(v1 >> 0x15 & 0x7 == tar4)
    s.add(v1 >> 0x06 & 0x7 == tar5)
    s.add(v3 >> 0x1D & 0x7 == tar6)
    s.add(v1 >> 0x1B & 0x7 == tar7)
    s.add(v2 >> 0x04 & 0x7 == tar8)
    s.add(v2 >> 0x0D & 0x7 == tar9)
    s.add(v2 >> 0x0A & 0x7 == tar10)
    s.add(v3 >> 0x1A & 0x7 == tar11)
    s.add(v2 >> 0x16 & 0x7 == tar12)
    s.add(v3 >> 0x17 & 0x7 == tar13)
    s.add(v2 >> 0x1C & 0x7 == tar14)
    s.add(v3 >> 0x14 & 0x7 == tar15)
    s.add(v2 >> 0x01 & 0x7 == tar16)
    s.add(v3 >> 0x11 & 0x7 == tar17)
    s.add(v1 >> 0x00 & 0x7 == tar18)
    s.add(v2 >> 0x13 & 0x7 == tar19)
    s.add(v1 >> 0x18 & 0x7 == tar20)
    s.add(v3 >> 0x0B & 0x7 == tar21)
    s.add(v2 >> 0x19 & 0x7 == tar22)
    s.add(v2 >> 0x10 & 0x7 == tar23)
    s.add(v1 >> 0x03 & 0x7 == tar24)
    s.add(v1 >> 0x12 & 0x7 == tar25)
    s.add(v1 >> 0x0F & 0x7 == tar26)
    s.add(v3 >> 0x02 & 0x7 == tar27)
    s.add(v1 >> 0x0C & 0x7 == tar28)
    s.add(v2 >> 0x07 & 0x7 == tar29)
    s.add(v3 >> 0x0E & 0x7 == tar30)
    s.add(v1 >> 0x1E & 0x3 | v2 >> 0x00 & 0x1 == tar31)
    ##    s.add(v1 < 1000)
    ##    s.add(v2 < 1000)
    ##    s.add(v3 < 1000)

    #print s
    s.check()
    return [
        s.model()[v1].as_long(),
        s.model()[v2].as_long(),
        s.model()[v3].as_long()
    ]
Esempio n. 11
0
    def initialize(_sketch, _holes, _hole_options, symmetries, differents,
                   _formulae, _mc_formulae, _mc_formulae_alt, _thresholds,
                   _accept_if_above, optimality_setting):

        Family._sketch = _sketch
        Family._holes = _holes
        Family._hole_options = _hole_options

        # map holes to their indices
        Family.hole_list = list(Family._holes.keys())
        Family._hole_indices = dict()
        for hole_index, hole in enumerate(Family.hole_list):
            Family._hole_indices[hole] = hole_index

        # map hole options to their indices
        Family._hole_option_indices = dict()
        for hole, options in Family._hole_options.items():
            indices = dict()
            k = 0
            for option in options:
                indices[option] = k
                k += 1
            Family._hole_option_indices[hole] = indices

        # initialize z3 solver
        Family._solver = z3.Solver()
        Family._solver_meta_vars = OrderedDict()
        variables = dict()
        for k, v in Family._hole_options.items():
            # create integer variable
            var = z3.Int(k)
            # store the variable
            Family._solver_meta_vars[var] = k
            variables[k] = var
            # add constraints for the hole assignments
            Family._solver.add(var >= 0)
            Family._solver.add(var < len(v))

        # encode restrictions
        if symmetries is not None:
            for sym in symmetries:
                for x, y in zip(sym, sym[1:]):
                    Family._solver.add(variables[x] < variables[y])
        if differents is not None:
            for diff in differents:
                for idx, x in enumerate(diff):
                    for y in diff[idx + 1:]:
                        Family._solver.add(variables[x] != variables[y])

        # store formulae info
        Family._formulae = _formulae
        Family._mc_formulae = _mc_formulae
        Family._mc_formulae_alt = _mc_formulae_alt
        Family._thresholds = _thresholds
        Family._accept_if_above = _accept_if_above
        Family._optimality_setting = optimality_setting

        # build quotient MDP
        quotient_builder = JaniQuotientBuilder(Family._sketch, Family._holes)
        Family._quotient_container = quotient_builder.construct(
            Family._hole_options, remember=set())
        Family._quotient_container.prepare(Family._mc_formulae,
                                           Family._mc_formulae_alt)
        Family._quotient_mdp = Family._quotient_container.mdp_handling.full_mdp
        Family._quotient_mdp_stats = (Family._quotient_mdp_stats[0] +
                                      Family._quotient_mdp.nr_states,
                                      Family._quotient_mdp_stats[1] + 1)
        logger.debug(
            f"Constructed MDP of size {Family._quotient_mdp.nr_states}.")
Esempio n. 12
0
 def __init__(self, worldmap=World(), curTime=0, tasks=[]):
     self.tasks = tasks
     self.world = worldmap
     self.globalTime = curTime
     self.solver = z3.Solver()
Esempio n. 13
0
 def __init__(self, y):
     self.y = y
     self.equations = z3.Solver()
     self.sc = {'s1': z3.Real('s1'), 's2': z3.Real('s2'),
                's3': z3.Real('s3'), 's4': z3.Real('s4')}
Esempio n. 14
0
def solve():
  f = z3.parse_smt2_file(OUTPUT_PATH)
  s = z3.Solver()
  s.add(f)
  return (s, str(s.check()))
def schedule(nurses, surgeries, monthTable, clientTable, monthInfo,
             surgeryTimeTable):
    solver = z3.Solver()
    grid = dict()
    result = dict()
    for date in clientTable.keys():
        # night
        nightNurses = list()
        for groupi in range(1, groupNumPerNight + 1):
            for nuri in range(1, nurseNumPerGroup + 1):
                value = z3.Int("night_%sgroup_%dnur_%d" % (date, groupi, nuri))
                grid[(date, groupi, nuri)] = value
                nightNurses.append(value)
                # constraint: make sure the nurses in night are the same as monthTable
                solver.add(value == int(monthTable[date][groupi - 1][nuri -
                                                                     1]))
        # surgery
        for surgeryID in clientTable[date]:
            nightAndDayNurses = list(nightNurses)
            # nightAndDayNurses = [value for value in nightNurses]
            for nurseType in nurseTypes:
                value = z3.Int("day_%ssid_%stype_%s" %
                               (date, surgeryID, nurseType))
                grid[(date, surgeryID, nurseType)] = value
                # department of surgery
                nurseIDs = clientTable[date][surgeryID]
                surgery = surgeries[surgeryID]
                orListForDepartment = list()
                # constraint: make sure all of the nurses come from client
                for nurseID in nurseIDs:
                    nurse = nurses[nurseID]
                    if matchDepartment(surgery, nurse):
                        # constraint: make sure the department of nurse matches with surgery
                        orListForDepartment.append(
                            z3.Or(value == int(nurseID)))
                # constraint: make sure the department of nurse matches with surgery
                # constraint: make sure all of the nurses come from client
                solver.add(z3.Or(orListForDepartment))
                nightAndDayNurses.append(value)

            # constraint: make sure nurses working for day are not working for night
            solver.add(z3.Distinct(nightAndDayNurses))
        # solver.add(z3.Eqel)

    # constraint: make sure the number of surgeries is limited by work hours
    for nurseID in nurses.keys():

        for date in clientTable.keys():
            dayNursesConstraint = list()
            for surgeryID in clientTable[date]:
                for nurseType in nurseTypes:
                    value = grid[(date, surgeryID, nurseType)]
                    dayNursesConstraint.append((value == int(nurseID), 1))
                #<type 'unicode'>
            if nurses[nurseID].is_pregnant == "true":
                solver.add(z3.PbLe(dayNursesConstraint, 1))
            else:
                solver.add(z3.PbLe(dayNursesConstraint, 1))

    # # constraint: make sure nurses are different in the same time
    # for surIDs in surgeryTimeTable :
    # 	sameTimeNurses = list()
    # 	for surID in surIDs :
    # 		for nurseType in nurseTypes :
    # 			value = grid[(surgeries[surID].date, surID, nurseType)]
    # 			sameTimeNurses.append(value)
    # 	# constraint: make sure nurses are different in the same time
    # 	solver.add(z3.Distinct(sameTimeNurses))

    # check sat
    if solver.check() != z3.sat:
        print "unsat"
        return None
    else:
        print "sat"
    # get the model

    model = solver.model()
    # get the result
    for date in clientTable.keys():
        dateTable = dict()
        nightNurses = list()
        for groupi in range(1, groupNumPerNight + 1):
            for nuri in range(1, nurseNumPerGroup + 1):
                nurseID = str(model[grid[(date, groupi, nuri)]].as_long())
                nightNurses.append(nurseID)
                # assert
                assert nurseID == monthTable[date][groupi - 1][nuri - 1]
        dateTable["night"] = nightNurses
        dayTable = dict()
        for surgeryID in clientTable[date]:
            surgeryNurses = dict()
            for nurseType in nurseTypes:
                surgeryNurses[nurseType] = str(
                    model[grid[date, surgeryID, nurseType]].as_long())
                # print model[grid[date, surgeryID, nurseType]].as_long()
                # print nurses[str(surgeryNurses[nurseType])].priority
            # constraint: make sure the qualification of roving nurse is higher than instrument nurse
            if nurses[surgeryNurses["instrument"]].priority > nurses[
                    surgeryNurses["roving"]].priority:
                temp = surgeryNurses["instrument"]
                surgeryNurses["instrument"] = surgeryNurses["roving"]
                surgeryNurses["roving"] = temp

            assert nurses[surgeryNurses["instrument"]].priority <= nurses[
                surgeryNurses["roving"]].priority
            dayTable[surgeryID] = surgeryNurses

        dateTable["day"] = dayTable
        result[date] = dateTable
    return result
    pass
Esempio n. 16
0
 def __init__(self, context, network):
     self.ctx = context
     self.net = network
     self.solver = z3.Solver()
     self.constraints = list()
Esempio n. 17
0
    def execute(trial = False):

        startTime = datetime.datetime.now()

        # Set up the database connection.
        client = dml.pymongo.MongoClient()
        repo = client.repo
        repo.authenticate('debhe_shizhan0_wangdayu_xt', 'debhe_shizhan0_wangdayu_xt')

        schoolDict = {}
        subwayDict = {}
        distanceHi = 0.002
        distanceLo = 0.000003
		
		# Loads the collection
        schools = []
        subwayStop = []
        #schools = repo['debhe_shizhan0_wangdayu_xt.allSchool'].find()
        schools = repo['debhe_shizhan0_wangdayu_xt.schoolSubwayDistance'].find()
        subwayStop = repo['debhe_shizhan0_wangdayu_xt.subwayStop'].find()

        #schools = repo['debhe_shizhan0_wangdayu_xt.schoolSubwayDistanceTrial'].find()
        #subwayStop = repo['debhe_shizhan0_wangdayu_xt.subwayStopTrial'].find()

        # Need to make the deepcopy of record for further use
        schools_1 = copy.deepcopy(schools)
        schools_2 = copy.deepcopy(schools)
        schools_3 = copy.deepcopy(schools)
        listSchool = []

        totalDistance = 0
        maxLength = 0
        for i in schools_3:
            temp = i['Distance']
            totalDistance += temp
            if(temp > maxLength):
                maxLength = temp
        distanceLo = totalDistance / schools.count()
        distanceHi = maxLength + 0.000001
        #print(distanceLo)

        # Compute all the schools that need a bike hub
        # For each school get the list of all the subway station that is in the certain range
        # create the system for the z3 solver
        for row_1 in schools_1:
            if(row_1['Distance'] < distanceLo):
                continue
            else:
                listSchool += [row_1['schoolName']]
                schoolDict[row_1['schoolName']] = []
                subwayStop_temp = copy.deepcopy(subwayStop)
                for row_2 in subwayStop_temp:
                    if(row_2['X'] != '""' and row_2['Y'] != '""' and row_1['schoolX'] != '""' and row_1['schoolY'] != '""'):
                        s = (row_1['schoolName'], row_2['stopName'], (float(row_1['schoolX']) - float(row_2['X']))**2 + ( float(row_1['schoolY']) - float(row_2['Y']) )**2, row_2['id'])
                        if(s[2] < distanceHi and s[2] > distanceLo):
                            schoolDict[row_1['schoolName']] += [row_2['stopName']]
                            


        #schoolDict_1 = copy.deepcopy(schoolDict)
        #print(len(schoolDict))
        solver = z3.Solver()

        # Create the variables for the z3 solver
        allSchool = [[z3.Int(subStops) for subStops in schoolDict[s]] for s in listSchool]

        allSchool_1 = copy.deepcopy(allSchool)

        # Add the constraint (There must be at least one station that get assigned by a hub)
        solver.add(sum([sum(school) for school in allSchool_1]) > 0)

        # Add the constraint
        # For each school, there must be at least one station that get assigned by a hub
        for school in allSchool:
            solver.add(sum(school) > 0)
            for subStops in school:
                solver.add(subStops < 2)
                solver.add(subStops >= 0)

        # Optimization
        # We want to find the minimum number of stations that get assigned
        '''
        minPlacementPossible = 199
        for i in range(199, -1, -1):
            solver.push()
            solver.add(sum([sum(school) for school in allSchool_1]) < 20)
            if( str(solver.check()) == "sat"):
                minPlacementPossible = i
            solver.pop()
        '''

        minPlacementPossible = 0
        for i in range(9, -1, -1):
            solver.push()
            solver.add(sum([sum(school) for school in allSchool_1]) < (2**i + minPlacementPossible) )
            #print(2**i)
            if( str(solver.check()) != 'unsat' ):
                minPlacementPossible += 2**i
                #print(minPlacementPossible)
            solver.pop()


        # Once we find the number, add it to the constraint
        solver.add(sum([sum(school) for school in allSchool_1]) < minPlacementPossible)
        #print(minPlacementPossible)
        print(solver.check())
        placementResult = solver.model()
        #placementResult_1 = copy.deepcopy(placementResult)
        print(placementResult)
        #print(len(placementResult))
        #print(placementResult[placementResult[0]])

        # store the assignment to the database 
        finalResult = []
        assignCount = 0
        for i in range(len(placementResult)):
            dic = {}
            stopNameParsed = str(placementResult[i]).replace(".","")
            assignment = str(placementResult[placementResult[i]])
            dic[stopNameParsed] = assignment
            if(assignment == "1"):
                assignCount += 1
            finalResult.append(dic)
        print(assignCount)

        # save the information to the database
        repo.dropCollection("optimizeBikePlacement")
        repo.createCollection("optimizeBikePlacement")

        repo['debhe_shizhan0_wangdayu_xt.optimizeBikePlacement'].insert_many(finalResult)
        repo['debhe_shizhan0_wangdayu_xt.optimizeBikePlacement'].metadata({'complete': True})
        print("Saved optimizeBikePlacement", repo['debhe_shizhan0_wangdayu_xt.optimizeBikePlacement'].metadata())

        repo.logout()

        endTime = datetime.datetime.now()

        return {"start":startTime, "end":endTime}
Esempio n. 18
0
    def isreachable_check(self, check, interval=None):
        logger.debug(f"Calculating whether all of the checks are reachable")
        solver = z3.Optimize()

        check_ports = check.get_ports()

        # build a mapping that shows the propagation of information to the guard (what influences the guard)
        modifier_map = self.get_modifier_map(check_ports)

        z3var_constraints, z3_vars = self.get_z3_vars(modifier_map)
        solver.add(z3var_constraints)

        if interval is None:
            solver.add(z3_vars['dt'] >= 0)
            logger.debug(f"Adding time start constraint: dt >= 0")
        else:
            interval = interval.resolve_infinitesimal()
            solver.add(interval.start_operator(z3_vars['dt'], interval.start))
            # logger.debug(f"Adding time start constraint: {interval.start_operator(z3_vars['dt'], interval.start)}")
            if interval.end is not math.inf:  # if it's infinity, just drop it...
                end = interval.end
                solver.add(interval.end_operator(z3_vars['dt'], end))
                # logger.debug(f"Adding time end constraint: {interval.end_operator(z3_vars['dt'], end)}")

        # create the constraints for updates and influences
        for port, modifiers in modifier_map.items():
            for modifier in modifiers:
                constraints = self._get_constraints_from_modifier(
                    modifier, z3_vars)
                solver.add(constraints)

        conv = checklib.CheckZ3Converter(z3_vars)
        check_constraints = conv.convert(check)
        if logger.getEffectiveLevel(
        ) <= logging.DEBUG:  # only log if the level is appropriate, since z3's string-conversion takes ages
            logger.debug(f"Check constraints: {check_constraints}")
        solver.add(check_constraints)

        objective = solver.minimize(z3_vars['dt'])  # find minimal value of dt
        check = solver.check()
        # logger.debug("satisfiability: %s", check)
        if solver.check() == z3.sat:
            inf_coeff, numeric_coeff, eps_coeff = objective.lower_values()
            returnvalue = Epsilon(numeric_coeff, eps_coeff)
            logger.info(
                f"Minimum time to reach passing checks is {returnvalue}")
            return returnvalue
        elif check == z3.unknown:
            logger.warning(
                f"The calculation of the check reachability was UNKNOWN. This usually happening in the presence of non-linear constraints. Do we have any?"
            )
            std_solver = z3.Solver()
            std_solver.add(solver.assertions())
            std_solver_check = std_solver.check()
            if std_solver_check == z3.sat:
                min_dt = std_solver.model()[z3_vars['dt']]
                as_python = to_python(min_dt)
                logger.info(
                    f"We did get a solution using the standard solver though: {as_python} Assuming that this is the smallest solution. CAREFUL THIS MIGHT BE WRONG!!!"
                )
                return as_python
            elif std_solver_check == z3.unknown:
                logger.error(
                    f"The standard solver was also not able to decide if there is a solution or not. The constraints are too hard!!!"
                )
                return False
            else:
                logger.info(
                    "The standard solver says there is no solution to the constraints. This means we also couldn't minimize. Problem solved."
                )
                return False
        else:
            logger.debug(f"Constraint set to reach checks is unsatisfiable.")
            return False
Esempio n. 19
0
def main():
    N = 9
    frames = []
    for p in range(N):
        frames.append(z3.BitVec('cnt_%d' % p, 3))

    def init(cnt):
        return (cnt == 0)

    def R(cnt, cntp):
        return (cntp == cnt + 1)

    def to_gray(cnt):
        return (cnt ^ z3.LShR(cnt, 1))

    def hd(n1, n2):
        d = (n1 ^ n2)
        d0 = z3.ZeroExt(1, z3.Extract(0, 0, d))
        d1 = z3.ZeroExt(1, z3.Extract(1, 1, d))
        d2 = z3.ZeroExt(1, z3.Extract(2, 2, d))
        return (d0 + d1 + d2)

    S = z3.Solver()
    S.add(init(frames[0]))

    checks = []
    for p in range(1, N):
        # get count in previous step
        cnt_prev = frames[p - 1]
        # get count in current step.
        cnt_curr = frames[p]

        # ADD constraint to solver.
        S.add(R(cnt_prev, cnt_curr))

        # get gray encoded version of count previous.
        gray_cnt_prev = to_gray(cnt_prev)
        # get gray encoded version of count current.
        gray_cnt_curr = to_gray(cnt_curr)

        # compute hamming distance b/w gray cnt prev and curr
        dist = hd(gray_cnt_prev, gray_cnt_curr)
        # check if this is not equal to one.
        check_curr = (dist != 1)
        # add to the list or checks.
        checks.append(check_curr)

    S.push()
    S.add(z3.Or(*checks))
    result = S.check()
    if result == z3.unsat:
        print("Property HOLDS.")
    else:
        print("Property does not HOLD.")
    S.pop()

    S.push()
    # add a constraint stating that all the states must be distict
    # check for satisfiability and fix the condition below
    if True:  # FIXME: change this condition.
        print('Reachability diameter not reached.')
    else:
        print('Reachability diameter reached.')
Esempio n. 20
0
 def __init__(self):
     self._ctx = z3.Context()
     self._solver = z3.Solver(ctx=self._ctx)
Esempio n. 21
0
def new_solver():
    return z3.Solver()
Esempio n. 22
0
def synthesize_tests(dataset: Dataset, assumptions: Dict[str, str],
                     combined_data: CombinedData):
    reset_all_tests()

    tea_logger = TeaLogger.get_logger()
    construct_all_tests(combined_data)

    global name
    stat_var_map = {}

    # Reorder variables so that y var is at the end
    combined_data._update_vars()

    # Compute unique statisical variable names from the combined data.
    combined_data_vars = []
    for v in combined_data.vars:
        var = StatVar(v.metadata[name])
        stat_var_map[v.metadata[name]] = var
        combined_data_vars.append(var)

    # Assume properties based on user assumptions and mode
    solver = z3.Solver()
    # s = Tactic('qflia').solver()
    assumed_props = assume_properties(stat_var_map, assumptions, solver,
                                      dataset, combined_data)
    # import pdb; pdb.set_trace()

    # Update the arity of test-level properties
    for prop in test_props:
        prop._update(len(combined_data.vars))

    # Apply all tests to the variables we are considering now in combined_data
    for test in all_tests():
        test.apply(*combined_data_vars)

    solver.push()  # Create backtracking point
    model = None  # Store model

    # For each test, add it to the solver as a constraint.
    # Add the tests and their properties
    for test in all_tests():
        tea_logger.log_debug(f"\nCurrently considering {test.name}")
        solver.add(test.__z3__ == z3.And(*test.query()))
        solver.add(test.__z3__ == z3.BoolVal(True))

        # Check the model
        result = solver.check()
        if result == z3.unsat:
            tea_logger.log_debug("Test is unsat.\n")
            solver.pop()
        elif result == z3.unknown:
            print("failed to solve")
            try:
                pass
            except z3.Z3Exception:
                return
        else:
            model = solver.model()
            test_invalid = False
            val = False
            # Does the test apply?
            # Would this ever be false??
            if model and z3.is_true(model.evaluate(test.__z3__)):
                # Verify the properties for that test
                for prop in test._properties:
                    if is_assumed_prop(assumed_props, prop):
                        tea_logger.log_debug(
                            f"User asserted property: {prop._name}.")
                        val = True
                        solver.add(prop.__z3__ == z3.BoolVal(val))
                    else:
                        tea_logger.log_debug(
                            f"Testing assumption: {prop._name}.")

                        # Does this property need to hold for the test to be valid?
                        # If so, verify that the property does hold
                        if model and z3.is_true(model.evaluate(prop.__z3__)):
                            val = verify_prop(dataset, combined_data, prop)
                            if val:
                                tea_logger.log_debug(f"Property holds.")
                            else:  # The property does not verify
                                assert (val == False)
                                tea_logger.log_debug(f"Property FAILS")
                                # if not test_invalid:
                                solver.pop()  # remove the last test
                                test_invalid = True
                                model = None
                                # else: # test is already invalid. Going here just for completeness of logging
                                #     tea_logger.log_debug(f"EVER GET HERE?")
                            solver.add(prop.__z3__ == z3.BoolVal(val))
        solver.push()  # Push latest state as backtracking point

    solver.check()
    model = solver.model()  # final model
    tests_to_conduct = []
    # Could add all the test props first
    # Then add all the tests
    for test in all_tests():
        if model and z3.is_true(model.evaluate(test.__z3__)):
            tests_to_conduct.append(test.name)
        elif not model:  # No test applies
            pass

    # reset_all_tests()
    return tests_to_conduct
Esempio n. 23
0
 def mk(self, using_nla=False, myseed=None):
     return z3.Solver()
    def generateTraces(self, maxNumberOfSolutions=3):
        def stateToRangeOfExistence(state, propositions, solution):
            try:
                stateIds = self.labelsToIds[state]
            except:
                return []
            coveredTimesteps = []
            for id in stateIds:
                coveredTimesteps += [
                    i for i in range(
                        int(solution[propositions[id][0]].as_string()),
                        int(solution[propositions[id][1]].as_string()) + 1)
                ]
            return coveredTimesteps

        allSolutions = []
        #         allEvents = [("message", i, j) for i in range(self.numMachines) for j in range(self.numMachines)]
        #         allEvents += [("nodeRestart", i) for i in range(self.numMachines)]
        #         allEvents = { allEvents[i] : i for i in range(len(allEvents)) }

        propositions = { node.eventId : (z3.Int("var_"+repr(node.eventId)+"_"+repr(node.label)+"_start"), z3.Int("var_"+repr(node.eventId)+"_"+repr(node.label)+"_end"))\
                        for node in self.nodes}

        sol = z3.Solver()
        self.lengthOfTrace = self.lengthOfLongestChain + 4

        for node in self.nodes:
            propKey = node.eventId
            sol.add(propositions[propKey][0] <= propositions[propKey][1])
            sol.add(propositions[propKey][0] >= 0)
            sol.add(propositions[propKey][1] <= self.lengthOfTrace)
            for pred in node.preds:
                if node.label[0] == self.idToNodes[pred].label[0]:
                    sol.add(propositions[pred][1] +
                            1 == propositions[node.eventId][0])
                else:
                    sol.add((propositions[node.eventId][0] >
                             propositions[pred][0]))
            if node.lastOnProcess == True:
                sol.add(propositions[propKey][1] == self.lengthOfTrace - 1)
        while len(allSolutions) < maxNumberOfSolutions and sol.check(
        ) == z3.sat:
            model = sol.model()
            allSolutions.append(model)
            forbidExistingSolution = [d() != model[d] for d in model]
            sol.add(z3.Or(forbidExistingSolution))

        traces = []
        allStates = [(machineId, stateKind, stateArg)
                     for stateKind in ["expect", "ready"]
                     for stateArg in range(self.numMachines)
                     for machineId in range(self.numMachines)]
        allStates += [(machineId, ev) for machineId in range(self.numMachines)
                      for ev in ["crash", "end"]]

        allStates = sorted(allStates)
        print({idx: allStates[idx] for idx in range(len(allStates))})

        for solution in allSolutions:
            trace = [[0 for _ in range(len(allStates))]
                     for _ in range(self.lengthOfTrace)]

            for idx, state in enumerate(allStates):
                coveredRange = stateToRangeOfExistence(state, propositions,
                                                       solution)
                for trueTimestep in coveredRange:
                    trace[trueTimestep][idx] = 1

            traces.append(trace)

        return traces
#!/usr/bin/env python2
## -*- coding: utf-8 -*-
##
## Triton
##

import sys
import z3

def sx(bits, value):
    sign_bit = 1 << (bits - 1)
    return (value & (sign_bit - 1)) - (value & sign_bit)

ctx = z3.Context()
s   = z3.Solver()

SymVar_0 = z3.BitVec('SymVar_0', 64)
ref_693 = SymVar_0
ref_708 = ref_693 # MOV operation
ref_15247 = ref_708 # MOV operation
ref_15308 = ref_15247 # MOV operation
ref_15322 = ((0x0 + ((ref_15308 + ((0x217E6161 * 0x1) & 0xFFFFFFFFFFFFFFFF)) & 0xFFFFFFFFFFFFFFFF)) & 0xFFFFFFFFFFFFFFFF) # LEA operation
ref_15326 = ref_15247 # MOV operation
ref_15340 = (0x217E6161 & ref_15326) # AND operation
ref_15347 = (~(ref_15340) & 0xFFFFFFFFFFFFFFFF) # NOT operation
ref_15349 = ((ref_15347 + ref_15322) & 0xFFFFFFFFFFFFFFFF) # ADD operation
ref_15357 = ((ref_15349 + 0x1) & 0xFFFFFFFFFFFFFFFF) # ADD operation
ref_27405 = ref_15357 # MOV operation
ref_60810 = ref_27405 # MOV operation
ref_65532 = ref_60810 # MOV operation
ref_65540 = ref_65532 # MOV operation
Esempio n. 26
0
if __name__ == "__main__":
    v_1 = z3.Real('v_1')
    l5 = z3.And(l2_T, v_1 == x)

if __name__ == "__main__":
    v = z3.Real('v')
    for s in [z3.And(l3, v == v_0), z3.And(l5, v == v_1)]:
        z3.solve(x != 0, s)

if __name__ == "__main__":
    v = z3.Real('v')
    l6 = z3.Or(z3.And(l3, v == v_0), z3.And(l5, v == v_1))
    z3.solve(l6)

if __name__ == "__main__":
    s = z3.Solver()
    s.add(l6)
    for i in range(5):
        if s.check() == z3.sat:
            m = s.model()
            x_val = m[x]
            print(m)
        else:
            print('no solution')
            break
        s.add(z3.Not(x == x_val))
    s

if __name__ == "__main__":
    s.add(x < 0)
    for i in range(5):
Esempio n. 27
0
#!/usr/bin/env python3

import z3
import sys

ctx = z3.Context()
s = z3.Solver(ctx=ctx)
queries = z3.parse_smt2_file(sys.argv[1])
k = int(sys.argv[2])
outfile = sys.argv[3]

query = queries[k]

with open(outfile, "w") as fout:
    fout.write("(assert\n" + query.sexpr() + "\n)\n")
Esempio n. 28
0
def cons_sat(data_copy, zones, percent_max, percent_min, factor):
    # ----------------- Each parameter will look like this (r1-1, r1-2, ..., rk-k) -----------------
    # ----------------- For example, r2-4 represents a route where the rider mey exit/enter in zone 2 and exit/enter in zone 4 -----------------
    parameter_names_z = []
    for i in range(1, zones + 1):
        for j in range(i, zones + 1):
            val = "r{0:d}".format(i)
            val += "-{0:d}".format(j)
            parameter_names_z.append(val)
    parameters_z = [z3.Real(n) for n in parameter_names_z]

    S = z3.Solver()

    projected_route_total = [0] * len(parameter_names_z)
    real_route_total = 0

    for item in data_copy:
        for i in range(len(parameter_names_z)):
            dest_1 = int(parameter_names_z[i][1])
            dest_2 = int(parameter_names_z[i][-1])
            # ----------------- Find daily revenue based on data -----------------
            # ----------------- This number will be the sum of the revenue from all route combinations -----------------
            if item['zone'] == dest_1 or item['zone'] == dest_2:
                projected_route_total[i] += (float(item['population']) *
                                             (item['trans_percent'] / 100))
                real_route_total += float(
                    item['population']) * (item['trans_percent'] / 100) * 2.75

    real_route_total = int(real_route_total)

    val = 0
    for i in range(len(parameters_z)):
        val += (parameters_z[i] * projected_route_total[i])
    # ----------------- Ensure that new fares for each route still == overall real revenue  -----------------
    S.add(val == real_route_total)

    for i in range(len(parameters_z)):
        val = (parameters_z[i] * projected_route_total[i]) / real_route_total
        # ----------------- Enusre new fares dont make one route responsible for more than 20% of revenue or less than 1% revenue -----------------
        S.add(val < percent_max, val > percent_min)

    # ----------------- Ensure that routes between two zones with lower avg incomes pay less than routes between two zones with higher average income -----------------
    for i in range(len(parameters_z)):
        outer_1 = int(parameter_names_z[i][1])
        outer_2 = int(parameter_names_z[i][-1])
        for j in range(i, len(parameters_z)):
            inner_1 = int(parameter_names_z[j][1])
            inner_2 = int(parameter_names_z[j][-1])
            # ----------------- E.g: r1-1 (1+1) < r3-4 (3+4); therefore r1-1 will have a higher fare than r3-4 -----------------
            if (outer_1 + outer_2 < inner_1 + inner_2):
                S.add(parameters_z[i] > parameters_z[j])
            # ----------------- Opposite of above -----------------
            elif (outer_1 + outer_2 > inner_1 + inner_2):
                S.add(parameters_z[i] < parameters_z[j])

    # ----------------- Ensure that the most expesnive route (r1-1) is at most 1.4 times the cheapest route (r5-5) -----------------
    S.add(parameters_z[-1] * factor > parameters_z[0])

    if str(S.check()) == 'unsat':
        return 'unsat'
    else:
        sat = S.model()
        new_fares = []
        for i in range(len(sat)):
            route = sat[i].name()
            price = sat[sat[i]].as_decimal(2)
            if price[-1] == '?':
                price = price[:-1]

            temp_dict = {}
            temp_dict[route] = price
            new_fares.append(temp_dict)
        return new_fares
Esempio n. 29
0
    def synthesize(self, outputNames, cnsts, sim):
        """Main synthesizer."""

        outs, y1s, y2s, y1cs, y2cs = self.createOutputExpressions(outputNames)
        input_vars = self.createInputVars()

        # let's create the initial instance.
        S = z3.Solver()

        # do we want unsat cores?
        if self.unsat_core: S.set(unsat_core=True)

        # constraints.
        self.addConstraints(S, cnsts)

        # let's now create the expression that states one of the outputs must be different.
        ys = []
        for i, (y1, y2, y1c,
                y2c) in enumerate(itertools.izip(y1s, y2s, y1cs, y2cs)):
            yi = z3.Bool('y%d' % i)
            self.addExpr(S, yi == z3.Distinct(y1, y2), 'prob%d' % i)
            ys.append(yi)
            if y1c:
                assert y2c
                self.addExpr(S, y1c, 'cnst%d_1' % i)
                self.addExpr(S, y2c, 'cnst%d_2' % i)

        y = z3.Bool('y')
        self.addExpr(S, y == z3.Or(*ys), 'prob')

        # now for the actual solution loop.
        iterations = 0
        # FIXME
        # y1mz3 = None
        # y2mz3 = None
        while S.check(y) == z3.sat:

            iterations += 1
            m = S.model()

            if self.VERBOSITY >= 2:
                self.log('\niteration #%d' % iterations)

            self.dumpModel(m, y1s, y2s)
            sim_inputs = self.extractInputsFromModel(m, input_vars)
            sim_outputs = {}

            # FIXME sim signature.
            sim(sim_inputs, sim_outputs)

            if self.DEBUG:
                pass

            if self.VERBOSITY >= 2:
                self.log_dict('sim_inputs', sim_inputs)
                self.log_dict('sim_outputs', sim_outputs)

            def assertEquality(ocnst, name):
                n1 = 'out_%s_1_%d' % (name, iterations)
                n2 = 'out_%s_2_%d' % (name, iterations)

                if self.unsat_core:
                    S.assert_and_track(ocnst == y1mz3, n1)
                    S.assert_and_track(ocnst == y2mz3, n2)
                else:
                    S.add(ocnst == y1mz3)
                    S.add(ocnst == y2mz3)

                if self.VERBOSITY >= 4:
                    self.log('out:' + repr(ocnst))

            y1z3s, y2z3s = [], []
            for name, out in itertools.izip(outputNames, outs):
                out.clearCache()
                y1mz3 = z3.simplify(
                    out.toZ3Constraints(Synthesizer.P1, sim_inputs))
                out.clearCache()
                y2mz3 = z3.simplify(
                    out.toZ3Constraints(Synthesizer.P2, sim_inputs))

                y1mz3c = out.z3ClausesWithConstraints(Synthesizer.P1,
                                                      sim_inputs)
                y2mz3c = out.z3ClausesWithConstraints(Synthesizer.P2,
                                                      sim_inputs)

                if y1mz3c:
                    assert y2mz3c
                    S.add(z3.simplify(y1mz3c))
                    S.add(z3.simplify(y2mz3c))

                y1z3s.append(y1mz3)
                y2z3s.append(y2mz3)

                if self.VERBOSITY >= 4:
                    self.log('#it:' + repr(iterations))
                    self.log('y1mz3:' + y1mz3.sexpr())
                    self.log('y2mz3:' + y2mz3.sexpr())

                if self.outputTypes[name] == Synthesizer.BITVEC:
                    assertEquality(z3.BitVecVal(sim_outputs[name], out.width),
                                   name)
                elif self.outputTypes[name] == Synthesizer.BOOL:
                    assertEquality(z3.BoolVal(sim_outputs[name]), name)
                else:
                    assert self.outputTypes[name] == Synthesizer.MEM
                    assertEquality(
                        ast.createConstantArray(out.awidth, out.dwidth,
                                                sim_outputs[name]), name)

            if iterations >= self.MAXITER:
                raise RuntimeError, 'Too many (%d) iterations executed.' % iterations

            if self.VERBOSITY >= 4 or self.DUMP_SMT2:
                filename = 'model%d.smt2' % iterations
                with open(filename, 'wt') as fileobj:
                    print >> fileobj, S.to_smt2()

        # and finally we are done.
        if self.VERBOSITY >= 1:
            self.log('Finished after %d iteration(s).' % iterations)

        # now we need to extract solution
        result = S.check(z3.Not(y))
        if result == z3.unsat and self.unsat_core:
            self.log('UNSAT core: ' + repr(S.unsat_core()))
            S.add(z3.Not(y))

        assert result == z3.sat
        m = S.model()
        if self.VERBOSITY >= 3:
            self.log('model:' + repr(m))

        for out in outs:
            out.clearCache()
        rs = [
            self.cleanup(cnsts, outputNames[i], out.synthesize(m))
            for i, out in enumerate(outs)
        ]
        for r in rs:
            r.clearCache()
        return rs
Esempio n. 30
0
def check_bounds(lc,
                 pre,
                 rec,
                 ref,
                 bounds,
                 z3_vars,
                 bound2s,
                 z3_var2s,
                 v=0,
                 progbar=False):

    all_z3_vars = z3_vars.copy()
    all_z3_vars.update(z3_var2s)

    ref2, _ = gen_rec_constraints(ref, z3_vars)

    s = z3.Solver()
    s2 = z3.Solver()
    s.set("timeout", 5000)
    s2.set("timeout", 5000)
    res = z3.sat

    # first check eq constraint won't cause timeouts:
    s.push()
    res = check_valid([], [], ref, ref2, pre, lc, rec, s)
    s.pop()
    if res == z3.unknown:
        ref, ref2 = [], []

    valid_bounds = []
    valid_bound2s = []
    for bound, bound2 in tqdm(list(zip(bounds, bound2s))):
        s.push()
        res = check_valid(valid_bounds + [bound], valid_bound2s + [bound2],
                          ref, ref2, pre, lc, rec, s)
        if res == z3.unsat:
            valid_bounds.append(bound)
            valid_bound2s.append(bound2)
        elif res == z3.unknown:
            ref = []
            ref2 = []
        else:
            # print('model',s.model())
            pass
        s.pop()

    loop = range(len(bounds) + len(ref))
    if progbar:
        loop = tqdm(loop)

    for i in loop:

        s.push()
        res1 = check_valid(bounds, bound2s, ref, ref2, pre, lc, rec, s)

        if v:
            print('check\n', s, res)
        if res1 == z3.unsat:
            if progbar:
                loop.update(1)
            break
        if res1 == z3.unknown:
            s.pop()
            ref = []
            ref2 = []
            continue

        m = s.model()
        try:
            model_constraint = [all_z3_vars[str(mi)] == m[mi] for mi in m]
        except KeyError:
            for mi in m:
                all_z3_vars[str(mi)] = z3.Int(str(mi))
            model_constraint = [all_z3_vars[str(mi)] == m[mi] for mi in m]

        if v:
            print('model\n', m)

        s2.push()
        s2.add(model_constraint)

        if v:
            print('bounds')
            print(bounds)

        bound_sats = []
        for bound, bound2 in zip(bounds, bound2s):
            s2.push()
            s2.add(bound, bound2)
            res = s2.check()
            bound_sats.append(res)
            if v:
                print('\t', bound, res)
            s2.pop()

        pruned_bounds = []
        pruned_bound2s = []
        for bound, bound2, bound_sat in zip(bounds, bound2s, bound_sats):
            if bound_sat == z3.sat or bound in valid_bounds:
                pruned_bounds.append(bound)
                pruned_bound2s.append(bound2)

        if len(pruned_bounds) == len(bounds):
            pruned_ref, pruned_ref2 = [], []
            for eq_constr, eq_constr2 in zip(ref, ref2):
                s2.push()
                s2.add(eq_constr, eq_constr2)
                res = s2.check()
                if res == z3.sat:
                    pruned_ref.append(eq_constr)
                    pruned_ref2.append(eq_constr2)
            ref = pruned_ref
            ref2 = pruned_ref2

        bounds = pruned_bounds
        bound2s = pruned_bound2s

        s.pop()
        s2.pop()

    if res1 != z3.unsat:
        # could not verify soundness, do not return any bounds
        bounds = valid_bounds

    return bounds