def test_acquire_already_taken_lock_timeout(self): if not self.is_set_up: return name = rand_string() default_ns = rand_string() lock_manager = LockManager(self.backend_type, default_ns) lock1 = lock_manager.acquire(name, ttl=2) self.assertEquals(lock1.acquired, True) # This raises LockTimeout because we wait for 1 second only and the lock above has ttl of 2 seconds. try: lock_manager.acquire(name, block=1) except LockTimeout, e: expected = 'Could not obtain lock for `{}` `{}` within 1s'.format(default_ns, name) self.assertEquals(e.args[0], expected)
def test_acquire_already_taken_auto_release(self): if not self.is_set_up: return name = rand_string() default_ns = rand_string() lock_manager = LockManager(self.backend_type, default_ns) lock1 = lock_manager.acquire(name, ttl=1) self.assertEquals(lock1.acquired, True) # This will not obtain the lock because it's just been taken above .. lock2 = lock_manager.acquire(name, block=False) self.assertEquals(lock2.acquired, False) # .. however, if we wait a moment we will get it because the original will have expired. sleep(2) lock3 = lock_manager.acquire(name) self.assertEquals(lock3.acquired, True)
def test_acquire_already_taken_manual_release(self): if not self.is_set_up: return name = rand_string() default_ns = rand_string() lock_manager = LockManager(self.backend_type, default_ns) lock1 = lock_manager.acquire(name, ttl=10) self.assertEquals(lock1.acquired, True) # This will not obtain the lock because it's just been taken above .. lock2 = lock_manager.acquire(name, block=False) self.assertEquals(lock2.acquired, False) # .. however, if we release the lock manually it will become available straightaway. lock1.release() lock3 = lock_manager.acquire(name) self.assertEquals(lock3.acquired, True)
def test_lock_info_name_no_namespace(self): if not self.is_set_up: return name = rand_string() default_ns = rand_string() lock_manager = LockManager(self.backend_type, default_ns) with lock_manager(name) as lock_info: self.assertEquals(lock_info.namespace, default_ns) self.assertEquals(lock_info.name, name) self.assertEquals(lock_info.ttl, DEFAULT.TTL) self.assertEquals(lock_info.acquired, True) self.assertEquals(lock_info.lock_type, LOCK_TYPE.PERMANENT) self.assertEquals(lock_info.block, DEFAULT.BLOCK) self.assertEquals(lock_info.block_interval, DEFAULT.BLOCK_INTERVAL)
def test_lock_info_name_with_attrs(self): if not self.is_set_up: return name = rand_string() default_ns = rand_string() ns = rand_string(7) ttl = rand_int() block = rand_int() block_interval = rand_int() lock_manager = LockManager(self.backend_type, default_ns) with lock_manager(name, ns, ttl, block, block_interval) as lock_info: self.assertEquals(lock_info.namespace, ns) self.assertEquals(lock_info.name, name) self.assertEquals(lock_info.ttl, ttl) self.assertEquals(lock_info.acquired, True) self.assertEquals(lock_info.lock_type, LOCK_TYPE.PERMANENT) self.assertEquals(lock_info.block, block) self.assertEquals(lock_info.block_interval, block_interval)
def start_server(parallel_server, zato_deployment_key=None): # Easier to type self = parallel_server # This cannot be done in __init__ because each sub-process obviously has its own PID self.pid = os.getpid() # This also cannot be done in __init__ which doesn't have this variable yet self.is_first_worker = int(os.environ['ZATO_SERVER_WORKER_IDX']) == 0 # Used later on use_tls = asbool(self.fs_server_config.crypto.use_tls) # Will be None if we are not running in background. if not zato_deployment_key: zato_deployment_key = '{}.{}'.format(datetime.utcnow().isoformat(), uuid4().hex) self.deployment_key = zato_deployment_key register_diag_handlers() # Create all POSIX IPC objects now that we have the deployment key self.shmem_size = int(float(self.fs_server_config.shmem.size) * 10**6) # Convert to megabytes as integer self.server_startup_ipc.create(self.deployment_key, self.shmem_size) # Store the ODB configuration, create an ODB connection pool and have self.odb use it self.config.odb_data = self.get_config_odb_data(self) self.set_up_odb() # Now try grabbing the basic server's data from the ODB. No point # in doing anything else if we can't get past this point. server = self.odb.fetch_server(self.config.odb_data) if not server: raise Exception('Server does not exist in the ODB') # Set up the server-wide default lock manager odb_data = self.config.odb_data backend_type = 'fcntl' if odb_data.engine == 'sqlite' else odb_data.engine self.zato_lock_manager = LockManager(backend_type, 'zato', self.odb.session) # Just to make sure distributed locking is configured correctly with self.zato_lock_manager(uuid4().hex): pass # Basic metadata self.id = server.id self.name = server.name self.cluster_id = server.cluster_id self.cluster = self.odb.cluster self.worker_id = '{}.{}.{}.{}'.format(self.cluster_id, self.id, self.worker_pid, new_cid()) # Looked up upfront here and assigned to services in their store self.enforce_service_invokes = asbool( self.fs_server_config.misc.enforce_service_invokes) # For server-to-server communication self.servers = Servers(self.odb, self.cluster.name, self.decrypt) logger.info( 'Preferred address of `%s@%s` (pid: %s) is `http%s://%s:%s`', self.name, self.cluster.name, self.pid, 's' if use_tls else '', self.preferred_address, self.port) # Reads in all configuration from ODB self.worker_store = WorkerStore(self.config, self) self.worker_store.invoke_matcher.read_config( self.fs_server_config.invoke_patterns_allowed) self.worker_store.target_matcher.read_config( self.fs_server_config.invoke_target_patterns_allowed) self.set_up_config(server) # Deploys services is_first, locally_deployed = self._after_init_common(server) # Initializes worker store, including connectors self.worker_store.init() self.request_dispatcher_dispatch = self.worker_store.request_dispatcher.dispatch # Normalize hot-deploy configuration self.hot_deploy_config = Bunch() self.hot_deploy_config.work_dir = os.path.normpath( os.path.join(self.repo_location, self.fs_server_config.hot_deploy.work_dir)) self.hot_deploy_config.backup_history = int( self.fs_server_config.hot_deploy.backup_history) self.hot_deploy_config.backup_format = self.fs_server_config.hot_deploy.backup_format # Configure remaining parts of SSO self.configure_sso() # Cannot be done in __init__ because self.sso_config is not available there yet salt_size = self.sso_config.hash_secret.salt_size self.crypto_manager.add_hash_scheme('zato.default', self.sso_config.hash_secret.rounds, salt_size) for name in ('current_work_dir', 'backup_work_dir', 'last_backup_work_dir', 'delete_after_pick_up'): # New in 2.0 if name == 'delete_after_pick_up': value = asbool(self.fs_server_config.hot_deploy.get( name, True)) self.hot_deploy_config[name] = value else: self.hot_deploy_config[name] = os.path.normpath( os.path.join(self.hot_deploy_config.work_dir, self.fs_server_config.hot_deploy[name])) broker_callbacks = { TOPICS[MESSAGE_TYPE.TO_PARALLEL_ANY]: self.worker_store.on_broker_msg, TOPICS[MESSAGE_TYPE.TO_PARALLEL_ALL]: self.worker_store.on_broker_msg, } self.broker_client = BrokerClient(self.kvdb, 'parallel', broker_callbacks, self.get_lua_programs()) self.worker_store.set_broker_client(self.broker_client) self._after_init_accepted(locally_deployed) self.odb.server_up_down(server.token, SERVER_UP_STATUS.RUNNING, True, self.host, self.port, self.preferred_address, use_tls) if is_first: logger.info('First worker of `%s` is %s', self.name, self.pid) self.startup_callable_tool.invoke( SERVER_STARTUP.PHASE.IN_PROCESS_FIRST, kwargs={ 'parallel_server': self, }) # Startup services self.invoke_startup_services(is_first) spawn_greenlet(self.set_up_pickup) # IPC ipc_forwarder_name = '{}-{}'.format(self.cluster.name, self.name) ipc_forwarder_name = fs_safe_name(ipc_forwarder_name) self.ipc_forwarder.name = ipc_forwarder_name self.ipc_forwarder.pid = self.pid spawn_greenlet(self.ipc_forwarder.run) # Set up IBM MQ connections if that component is enabled if self.fs_server_config.component_enabled.ibm_mq: # Will block for a few seconds at most, until is_ok is returned # which indicates that a connector started or not. is_ok = self.start_ibm_mq_connector( int(self.fs_server_config.ibm_mq.ipc_tcp_start_port)) if is_ok: self.create_initial_wmq_definitions( self.worker_store.worker_config.definition_wmq) self.create_initial_wmq_outconns( self.worker_store.worker_config.out_wmq) self.create_initial_wmq_channels( self.worker_store.worker_config.channel_wmq) else: self.startup_callable_tool.invoke( SERVER_STARTUP.PHASE.IN_PROCESS_OTHER, kwargs={ 'parallel_server': self, }) # IPC self.ipc_api.name = self.name self.ipc_api.pid = self.pid self.ipc_api.on_message_callback = self.worker_store.on_ipc_message spawn_greenlet(self.ipc_api.run) self.startup_callable_tool.invoke(SERVER_STARTUP.PHASE.AFTER_STARTED, kwargs={ 'parallel_server': self, }) logger.info('Started `%s@%s` (pid: %s)', server.name, server.cluster.name, self.pid)
def start_server(parallel_server, zato_deployment_key=None): # Easier to type self = parallel_server # type: ParallelServer # This cannot be done in __init__ because each sub-process obviously has its own PID self.pid = os.getpid() # This also cannot be done in __init__ which doesn't have this variable yet self.is_first_worker = int(os.environ['ZATO_SERVER_WORKER_IDX']) == 0 # Used later on use_tls = asbool(self.fs_server_config.crypto.use_tls) # Will be None if we are not running in background. if not zato_deployment_key: zato_deployment_key = '{}.{}'.format(datetime.utcnow().isoformat(), uuid4().hex) self.deployment_key = zato_deployment_key register_diag_handlers() # Create all POSIX IPC objects now that we have the deployment key self.shmem_size = int(float(self.fs_server_config.shmem.size) * 10**6) # Convert to megabytes as integer self.server_startup_ipc.create(self.deployment_key, self.shmem_size) self.connector_config_ipc.create(self.deployment_key, self.shmem_size) # Store the ODB configuration, create an ODB connection pool and have self.odb use it self.config.odb_data = self.get_config_odb_data(self) self.set_up_odb() # Now try grabbing the basic server's data from the ODB. No point # in doing anything else if we can't get past this point. server = self.odb.fetch_server(self.config.odb_data) if not server: raise Exception('Server does not exist in the ODB') # Set up the server-wide default lock manager odb_data = self.config.odb_data backend_type = 'fcntl' if odb_data.engine == 'sqlite' else odb_data.engine self.zato_lock_manager = LockManager(backend_type, 'zato', self.odb.session) # Just to make sure distributed locking is configured correctly with self.zato_lock_manager(uuid4().hex): pass # Basic metadata self.id = server.id self.name = server.name self.cluster_id = server.cluster_id self.cluster = self.odb.cluster self.worker_id = '{}.{}.{}.{}'.format(self.cluster_id, self.id, self.worker_pid, new_cid()) # Looked up upfront here and assigned to services in their store self.enforce_service_invokes = asbool(self.fs_server_config.misc.enforce_service_invokes) # For server-to-server communication self.servers = Servers(self.odb, self.cluster.name, self.decrypt) logger.info('Preferred address of `%s@%s` (pid: %s) is `http%s://%s:%s`', self.name, self.cluster.name, self.pid, 's' if use_tls else '', self.preferred_address, self.port) # Configure which HTTP methods can be invoked via REST or SOAP channels methods_allowed = self.fs_server_config.http.methods_allowed methods_allowed = methods_allowed if isinstance(methods_allowed, list) else [methods_allowed] self.http_methods_allowed.extend(methods_allowed) # As above, as a regular expression to be used in pattern matching http_methods_allowed_re = '|'.join(self.http_methods_allowed) self.http_methods_allowed_re = '({})'.format(http_methods_allowed_re) # Reads in all configuration from ODB self.worker_store = WorkerStore(self.config, self) self.worker_store.invoke_matcher.read_config(self.fs_server_config.invoke_patterns_allowed) self.worker_store.target_matcher.read_config(self.fs_server_config.invoke_target_patterns_allowed) self.set_up_config(server) # Normalize hot-deploy configuration self.hot_deploy_config = Bunch() self.hot_deploy_config.pickup_dir = absolutize(self.fs_server_config.hot_deploy.pickup_dir, self.repo_location) self.hot_deploy_config.work_dir = os.path.normpath(os.path.join( self.repo_location, self.fs_server_config.hot_deploy.work_dir)) self.hot_deploy_config.backup_history = int(self.fs_server_config.hot_deploy.backup_history) self.hot_deploy_config.backup_format = self.fs_server_config.hot_deploy.backup_format # Added in 3.1, hence optional max_batch_size = int(self.fs_server_config.hot_deploy.get('max_batch_size', 1000)) # Turn it into megabytes max_batch_size = max_batch_size * 1000 # Finally, assign it to ServiceStore self.service_store.max_batch_size = max_batch_size # Deploys services is_first, locally_deployed = self._after_init_common(server) # Initializes worker store, including connectors self.worker_store.init() self.request_dispatcher_dispatch = self.worker_store.request_dispatcher.dispatch # Configure remaining parts of SSO self.configure_sso() # Cannot be done in __init__ because self.sso_config is not available there yet salt_size = self.sso_config.hash_secret.salt_size self.crypto_manager.add_hash_scheme('zato.default', self.sso_config.hash_secret.rounds, salt_size) for name in('current_work_dir', 'backup_work_dir', 'last_backup_work_dir', 'delete_after_pickup'): # New in 2.0 if name == 'delete_after_pickup': # For backward compatibility, we need to support both names old_name = 'delete_after_pick_up' if old_name in self.fs_server_config.hot_deploy: _name = old_name else: _name = name value = asbool(self.fs_server_config.hot_deploy.get(_name, True)) self.hot_deploy_config[name] = value else: self.hot_deploy_config[name] = os.path.normpath(os.path.join( self.hot_deploy_config.work_dir, self.fs_server_config.hot_deploy[name])) broker_callbacks = { TOPICS[MESSAGE_TYPE.TO_PARALLEL_ANY]: self.worker_store.on_broker_msg, TOPICS[MESSAGE_TYPE.TO_PARALLEL_ALL]: self.worker_store.on_broker_msg, } self.broker_client = BrokerClient(self.kvdb, 'parallel', broker_callbacks, self.get_lua_programs()) self.worker_store.set_broker_client(self.broker_client) # Make sure that broker client's connection is ready before continuing # to rule out edge cases where, for instance, hot deployment would # try to publish a locally found package (one of extra packages found) # before the client's thread connected to KVDB. if not self.broker_client.ready: start = now = datetime.utcnow() max_seconds = 120 until = now + timedelta(seconds=max_seconds) while not self.broker_client.ready: now = datetime.utcnow() delta = (now - start).total_seconds() if now < until: # Do not log too early so as not to clutter logs if delta > 2: logger.info('Waiting for broker client to become ready (%s, max:%s)', delta, max_seconds) gevent.sleep(0.5) else: raise Exception('Broker client did not become ready within {} seconds'.format(max_seconds)) self._after_init_accepted(locally_deployed) self.odb.server_up_down( server.token, SERVER_UP_STATUS.RUNNING, True, self.host, self.port, self.preferred_address, use_tls) if is_first: logger.info('First worker of `%s` is %s', self.name, self.pid) self.startup_callable_tool.invoke(SERVER_STARTUP.PHASE.IN_PROCESS_FIRST, kwargs={ 'parallel_server': self, }) # Clean up any old WSX connections possibly registered for this server # which may be still linger around, for instance, if the server was previously # shut down forcibly and did not have an opportunity to run self.cleanup_on_stop self.cleanup_wsx() # Startup services self.invoke_startup_services(is_first) spawn_greenlet(self.set_up_pickup) # Set up subprocess-based IBM MQ connections if that component is enabled if self.fs_server_config.component_enabled.ibm_mq: # Will block for a few seconds at most, until is_ok is returned # which indicates that a connector started or not. is_ok = self.connector_ibm_mq.start_ibm_mq_connector(int(self.fs_server_config.ibm_mq.ipc_tcp_start_port)) try: if is_ok: self.connector_ibm_mq.create_initial_wmq_definitions(self.worker_store.worker_config.definition_wmq) self.connector_ibm_mq.create_initial_wmq_outconns(self.worker_store.worker_config.out_wmq) self.connector_ibm_mq.create_initial_wmq_channels(self.worker_store.worker_config.channel_wmq) except Exception as e: logger.warn('Could not create initial IBM MQ objects, e:`%s`', e) # Set up subprocess-based SFTP connections is_ok = self.connector_sftp.start_sftp_connector(int(self.fs_server_config.ibm_mq.ipc_tcp_start_port)) if is_ok: self.connector_sftp.create_initial_sftp_outconns(self.worker_store.worker_config.out_sftp) else: self.startup_callable_tool.invoke(SERVER_STARTUP.PHASE.IN_PROCESS_OTHER, kwargs={ 'parallel_server': self, }) # IPC self.ipc_api.name = self.ipc_api.get_endpoint_name(self.cluster.name, self.name, self.pid) self.ipc_api.pid = self.pid self.ipc_api.on_message_callback = self.worker_store.on_ipc_message spawn_greenlet(self.ipc_api.run) self.startup_callable_tool.invoke(SERVER_STARTUP.PHASE.AFTER_STARTED, kwargs={ 'parallel_server': self, }) logger.info('Started `%s@%s` (pid: %s)', server.name, server.cluster.name, self.pid)
def start_server(parallel_server, zato_deployment_key=None): # Easier to type self = parallel_server # This cannot be done in __init__ because each sub-process obviously has its own PID self.pid = os.getpid() # Used later on use_tls = asbool(self.fs_server_config.crypto.use_tls) # Will be None if we are not running in background. if not zato_deployment_key: zato_deployment_key = '{}.{}'.format(datetime.utcnow().isoformat(), uuid4().hex) self.deployment_key = zato_deployment_key register_diag_handlers() # Store the ODB configuration, create an ODB connection pool and have self.odb use it self.config.odb_data = self.get_config_odb_data(self) self.set_odb_pool() # Now try grabbing the basic server's data from the ODB. No point # in doing anything else if we can't get past this point. server = self.odb.fetch_server(self.config.odb_data) if not server: raise Exception('Server does not exist in the ODB') # Set up the server-wide default lock manager odb_data = self.config.odb_data backend_type = 'fcntl' if odb_data.engine == 'sqlite' else odb_data.engine self.zato_lock_manager = LockManager(backend_type, 'zato', self.odb.session) # Just to make sure distributed locking is configured correctly with self.zato_lock_manager(uuid4().hex): pass # Basic metadata self.id = server.id self.name = server.name self.cluster_id = server.cluster_id self.cluster = self.odb.cluster # Looked up upfront here and assigned to services in their store self.enforce_service_invokes = asbool( self.fs_server_config.misc.enforce_service_invokes) # For server-to-server communication self.servers = Servers(self.odb, self.cluster.name) logger.info( 'Preferred address of `%s@%s` (pid: %s) is `http%s://%s:%s`', self.name, self.cluster.name, self.pid, 's' if use_tls else '', self.preferred_address, self.port) # Reads in all configuration from ODB self.worker_store = WorkerStore(self.config, self) self.worker_store.invoke_matcher.read_config( self.fs_server_config.invoke_patterns_allowed) self.worker_store.target_matcher.read_config( self.fs_server_config.invoke_target_patterns_allowed) self.set_up_config(server) # Deploys services is_first, locally_deployed = self._after_init_common(server) # Initializes worker store, including connectors self.worker_store.init() self.request_dispatcher_dispatch = self.worker_store.request_dispatcher.dispatch # Normalize hot-deploy configuration self.hot_deploy_config = Bunch() self.hot_deploy_config.work_dir = os.path.normpath( os.path.join(self.repo_location, self.fs_server_config.hot_deploy.work_dir)) self.hot_deploy_config.backup_history = int( self.fs_server_config.hot_deploy.backup_history) self.hot_deploy_config.backup_format = self.fs_server_config.hot_deploy.backup_format for name in ('current_work_dir', 'backup_work_dir', 'last_backup_work_dir', 'delete_after_pick_up'): # New in 2.0 if name == 'delete_after_pick_up': value = asbool(self.fs_server_config.hot_deploy.get( name, True)) self.hot_deploy_config[name] = value else: self.hot_deploy_config[name] = os.path.normpath( os.path.join(self.hot_deploy_config.work_dir, self.fs_server_config.hot_deploy[name])) self._after_init_accepted(locally_deployed) broker_callbacks = { TOPICS[MESSAGE_TYPE.TO_PARALLEL_ANY]: self.worker_store.on_broker_msg, TOPICS[MESSAGE_TYPE.TO_PARALLEL_ALL]: self.worker_store.on_broker_msg, } self.broker_client = BrokerClient(self.kvdb, 'parallel', broker_callbacks, self.get_lua_programs()) self.worker_store.set_broker_client(self.broker_client) self.odb.server_up_down(server.token, SERVER_UP_STATUS.RUNNING, True, self.host, self.port, self.preferred_address, use_tls) # Startup services if is_first: self.invoke_startup_services(is_first) spawn_greenlet(self.set_up_pickup) # IPC if is_first: self.ipc_forwarder.name = self.name self.ipc_forwarder.pid = self.pid spawn_greenlet(self.ipc_forwarder.run) # IPC self.ipc_api.name = self.name self.ipc_api.pid = self.pid self.ipc_api.on_message_callback = self.worker_store.on_ipc_message spawn_greenlet(self.ipc_api.run) logger.info('Started `%s@%s` (pid: %s)', server.name, server.cluster.name, self.pid)