Esempio n. 1
0
	def __init__(self,*args,**keywords):

		#check to make sure unique names are used in scene
		uniqueNames(iterable(mc.ls(type='dagNode')),re=True)

		#default options
		self.number=1 #if there are no transforms, create this many rivets
		self.distribute=''
		self.parents=['','']
		self.rebuild=False
		self.taper='none' # none, normal, distance
		self.scale='none' # none, uniform, or relative
		self.scaleDirection=['length','width'] # length, width
		self.createAimCurve=False
		self.aimCurve=''
		self.handles=[]
		self.handleShapes=[]
		self.autoFlexGroups=[]
		self.mo=True # maintain offset
		self.ctrls=[] #by default control attributes are placed on given transforms
		self.keepPivot=True
		self.snapToSurface=False
		self.realign=False
		self.rivets=[]
		self.ClosestPoints=[]
		self.aimGroups=[]
		self.softParents=[]
		self.ArcCtrl=[]
		self.arcWeight=.5
		self.closestPoint='' # geometry, pivot
		self.organize=True
		self.constraint=False # use a parent constraint
		self.parent=False # create a transform and parent objects to it

		self.spaceTr=''
		self.surfaceAttr=''
		self.bindPoses=[]
		self.parentSpaces=[]
		self.hasGeometry=True
		self.skipRotate=[]
		self.skipTranslate=[]
		self.skipScale=[]
		self.skipScaleObjects=[]
		self.skipRotateObjects=[]
		self.skipTranslateObjects=[]
		self.minScaleWidth=0
		self.maxScaleWidth=1
		self.minScaleLength=0
		self.maxScaleLength=1
		self.surfaceMatrix=''
		self.surfaceInverseMatrix=''
		self.worldMatrix=''
		self.trs=[]
		self.uSpans=-1
		self.vSpans=-1
		self.skins=[]

		self.shortNames=\
		{
			'sd':'scaleDirection',
			'p':'parents',
			'sp':'softParents'
		}

		sel=[]
		if len(args)==0:
			sel=mc.ls(sl=True)
		for a in args:
			sel.extend(iterable(a))

		self.bindPoses=iterable(getBindPoses(sel))

		if len(self.bindPoses)>0:
			goToDagPose(self.bindPoses[0])

		self.edges=PolyEdgeList(sel,f=True)
		self.trs=removeDuplicates(mc.ls(self.edges.etcObj,tr=True))

		if len(self.edges)==0: #look for a surface or surface attribute
			reversedObjList=getReversed(self.edges.etcObj)
			for obj in reversedObjList:
				if len(obj.split('.'))>1 and mc.getAttr(obj,type=True)=='nurbsSurface':
					self.surfaceAttr=obj
					obj=mc.ls(self.surfaceAttr,o=True)[0]
					if mc.nodeType(obj)=='nurbsSurface':
						self.uSpans=mc.getAttr(obj+'.spansU')
						self.vSpans=mc.getAttr(obj+'.spansV')
						self.spaceTr=mc.listRelatives(obj,p=True)[0]
					break
				elif mc.nodeType(obj)=='nurbsSurface':
					self.surfaceAttr=obj+'.worldSpace[0]'
					self.spaceTr=mc.listRelatives(obj,p=True)[0]
					self.uSpans=mc.getAttr(obj+'.spansU')
					self.vSpans=mc.getAttr(obj+'.spansV')
					self.trs.remove(obj)
					break
				else:
					children=mc.listRelatives(obj,c=True,s=True,ni=True,type='nurbsSurface')
					if isIterable(children) and len(children)>0:
						self.spaceTr=mc.ls(obj)[0]
						self.surfaceAttr=children[0]+'.worldSpace[0]'
						self.uSpans=mc.getAttr(children[0]+'.spansU')
						self.vSpans=mc.getAttr(children[0]+'.spansV')
						self.trs.remove(obj)
						break
		else:
			self.spaceTr=self.edges.getTr()

		for k in keywords:
			if k in self.__dict__:
				exec('self.'+k+'=keywords[k]')
			elif k in self.shortNames:
				exec('self.'+self.shortNames[k]+'=keywords[k]')

		if len(iterable(self.parents))==1:
			self.parents=[iterable(self.parents)[0],iterable(self.parents)[0]]
		if len(iterable(self.softParents))==1:
			self.softParents=[iterable(self.softParents)[0],iterable(self.softParents)[0]]

		if len(self.ctrls)==0:
			self.ctrls=self.trs
		while len(self.ctrls)<len(self.trs):
			self.ctrls.append(self.ctrls[-1])

		if len(self.skipRotate)>0:
			for i in self.skipRotate:
				self.skipRotateObjects.append(self.trs[self.skipRotate[i]])
		if len(self.skipTranslate)>0:
			for i in self.skipTranslate:
				self.skipTranslateObjects.append(self.trs[self.skipTranslate[i]])
		if len(self.skipScale)>0:
			for i in self.skipScale:
				self.skipScaleObjects.append(self.trs[self.skipScale[i]])

		if len(self.trs)>0:
			for t in self.trs:
				shCount=len\
				(
					removeDuplicates(mc.listRelatives(t,c=True,type='nurbsSurface'))+
					removeDuplicates(mc.listRelatives(t,c=True,type='nurbsCurve'))+
					removeDuplicates(mc.listRelatives(t,c=True,type='mesh'))
				)

				if shCount==0:
					self.hasGeometry=False
					self.closestPoint='pivot'
					break

		if self.closestPoint=='' and self.hasGeometry: # default to pivot if using snap to surface, otherwise defualts to geometry
			if self.snapToSurface:
				self.closestPoint='pivot'
			else:
				self.closestPoint='geometry'

		if len(self.trs)!=0:
			self.number=len(self.trs)

		if len(self.ctrls)<len(self.trs):
			self.ctrls=self.trs

		if not self.parent and not self.constraint:
			self.parent=True

		if self.createAimCurve:
			self.parent=True
			#self.constraint=False

		#find the root joint if present
		try:
			joints=removeDuplicates(mc.listConnections(iterable(mc.ls(iterable(mc.listHistory(self.surfaceAttr)))),type='joint'))
			if len(joints)>0: self.spaceTr=hierarchyOrder(joints)[0]
		except:
			pass

		self.create()
Esempio n. 2
0
	def __init__(self,*args,**keywords):

		# default options

		self.name='limb'
		self.stretch=20
		self.squash=0
		self.twist=True # performs auto detect
		self.sway=True
		self.switch='ik' # initial ik/fk switch state
		self.handleOptions=[{'type':'doubleEllipse','spin':-180},{'type':'doubleEllipse','spin':-90},{'type':'doubleEllipse'},{'type':'locator'}]
		self.tol=1.0 # angle tolerance for preferred angles
		self.parent=''

		self.shortNames=\
		{
			'n':'name',
			'p':'parent',
			'sp':'softParent',
			'co':'controlObjects',
			'ho':'handleOptions'
		}

		# attributes

		self.controlObjects=['','','','']
		self.bindPoses=[]
		self.joints=[]
		self.group=''
		self.orientAxis=''
		self.bendAxis=''
		self.poleAxis=''
		self.ctrlJoints=[]
		self.handles=[]
		self.endEffector=''
		self.ikHandle=''
		self.jointParent=''
		self.jointParent=''
		self.originalRotations={}
		self.bendDirection=0
		self.poleVector=[]
		self.poleVectorWorld=[]
		self.upVector=[]
		self.aimVector=[]
		self.parentSpaces=[]

		for k in keywords:

			if k in self.__dict__:
				exec('self.'+k+'=keywords[k]')
			elif k in self.shortNames:
				exec('self.'+self.shortNames[k]+'=keywords[k]')

		uniqueNames(re=True)

		if len(args)==0:
			args=mc.ls(sl=True)

		sel=[]
		for a in args:
			sel.extend(iterable(a))
		sel=hierarchyOrder(sel)

		# parse options

		defualtHandleOptions=[{'type':'doubleEllipse','spin':-180},{'type':'doubleEllipse','spin':-90},{'type':'doubleEllipse'},{'type':'locator'}]

		i=len(self.handleOptions)
		while len(self.handleOptions)<4:
			self.handleOption.append(defualtHandleOptions[i])
			i+=1

		if isinstance(self.handleOptions,dict):
			self.handleOptions=[self.handleOptions,self.handleOptions,self.handleOptions]
		elif isIterable(self.handleOptions):
			if len(self.handleOptions)==0:
				self.handleOptions.append({})
			while len(self.handleOptions)<3:
				self.handleOptions.append(self.handleOptions[-1])
		else:
			self.handleOptions=[{},{},{}]

		self.controlObjects=iterable(self.controlObjects)
		self.orientAxis=self.orientAxis.lower()

		self.baseTwist=''
		self.hierarchy=[]
		if len(sel)>2:
			for j in sel[:-1]:
				if len(hierarchyBetween(j,sel[-1]))>len(self.hierarchy):
					self.hierarchy=hierarchyBetween(j,sel[-1])
			closest=9e999
			for s in removeAll([self.hierarchy[0],self.hierarchy[-1]],sel):
				if\
				(
					len(iterable(mc.listRelatives(self.hierarchy[0],p=True)))==0 or
					s in mc.listRelatives(mc.listRelatives(self.hierarchy[0],p=True)[0],c=True,type='joint')
				):
					dist=distanceBetween(s,self.hierarchy[0])
					if dist<closest:
						closest=dist
						self.baseTwist=s
		else:
			self.hierarchy=hierarchyBetween(sel[0],sel[-1])

		self.bindPoses=iterable(getBindPoses(self.hierarchy))

		self.joints=['','','']

		if len(self.hierarchy)<3:
			raise Exception('There are no joints between your start and end joint. No IK created.')

		self.joints[0]=self.hierarchy[0]
		self.joints[-1]=self.hierarchy[-1]

		# find the orientation axis

		self.orientAxis='x'
		axisLen={'x':0,'y':0,'z':0}
		for j in self.hierarchy[1:]:
			for a in ['x','y','z']:
				axisLen[a]+=abs(mc.getAttr(j+'.t'+a))
				if axisLen[a]>axisLen[self.orientAxis]:
					self.orientAxis=a

		# find bend joint and pole vector

		self.originalRotations={}

		for j in self.hierarchy[1:-1]: # check to see if any have a non-zero preferred angle
			for a in removeAll(self.orientAxis,['x','y','z']):
				if abs(mc.getAttr(j+'.pa'+a))>=self.tol:
					self.originalRotations[j+'.r'+a]=mc.getAttr(j+'.r'+a)
					mc.setAttr(j+'.r'+a,mc.getAttr(j+'.pa'+a))
		greatestAngle=0
		for j in self.hierarchy[1:-1]:
			jPos=mc.xform(j,q=True,ws=True,rp=True)
			prevJPos=mc.xform(self.hierarchy[self.hierarchy.index(j)-1],q=True,ws=True,rp=True)
			nextJPos=mc.xform(self.hierarchy[self.hierarchy.index(j)+1],q=True,ws=True,rp=True)
			vAngle=mc.angleBetween(v1=normalize(jPos[0]-prevJPos[0],jPos[1]-prevJPos[1],jPos[2]-prevJPos[2]),v2=normalize(nextJPos[0]-jPos[0],nextJPos[1]-jPos[1],jPos[2]-jPos[2]))[-1]
			if abs(vAngle)>greatestAngle:
				greatestAngle=abs(vAngle)
				self.joints[1]=j

		mp=midPoint\
		(
			self.hierarchy[0],self.hierarchy[-1],
			bias=\
			(
				distanceBetween(self.hierarchy[0],self.joints[1])/
				(distanceBetween(self.hierarchy[0],self.joints[1])+distanceBetween(self.joints[1],self.hierarchy[-1]))
			)
		)

		bendPoint=mc.xform(self.joints[1],q=True,ws=True,rp=True)

		self.poleVectorWorld=normalize\
		(
			bendPoint[0]-mp[0],
			bendPoint[1]-mp[1],
			bendPoint[2]-mp[2]
		)

		pmm=mc.createNode('pointMatrixMult')
		mc.setAttr(pmm+'.vm',True)
		mc.connectAttr(self.joints[1]+'.worldInverseMatrix',pmm+'.im')
		mc.setAttr(pmm+'.ip',*self.poleVectorWorld)

		self.poleVector=mc.getAttr(pmm+'.o')[0]

		disconnectNodes(pmm)
		mc.delete(pmm)

		greatestLength=0.0
		for i in [0,1,2]:
			if abs(self.poleVector[i])>greatestLength and ['x','y','z'][i]!=self.orientAxis:
				self.poleAxis=['x','y','z'][i]
				greatestLength=abs(self.poleVector[i])
				self.bendDirection=-abs(self.poleVector[i])/self.poleVector[i]

		for r in self.originalRotations:
			mc.setAttr(r,self.originalRotations[r])

		preferredAngleWarning=False
		if not mc.objExists(self.joints[1]):
			preferredAngleWarning=True
			mp=midPoint(self.hierarchy[0],self.hierarchy[-1])
			cd=9e999
			dist=0
			for j in self.hierarchy[1:-1]:
				dist=distanceBetween(j,mp)
				if dist<cd:
					cd=dist
					self.joints[1]=j
					self.bendAxis=removeAll(self.orientAxis,['z','y','x'])[0]

		if self.poleAxis=='': self.poleAxis=removeAll([self.orientAxis,self.bendAxis],['x','y','z'])[0]
		if self.bendAxis=='': self.bendAxis=removeAll([self.orientAxis,self.poleAxis],['x','y','z'])[0]
		if self.orientAxis=='': self.orientAxis=removeAll([self.bendAxis,self.poleAxis],['x','y','z'])[0]

		if self.poleAxis=='x': self.poleVector=[-self.bendDirection,0.0,0.0]
		if self.poleAxis=='y': self.poleVector=[0.0,-self.bendDirection,0.0]
		if self.poleAxis=='z': self.poleVector=[0.0,0.0,-self.bendDirection]

		if self.bendAxis=='x': self.upVector=[-self.bendDirection,0.0,0.0]
		if self.bendAxis=='y': self.upVector=[0.0,-self.bendDirection,0.0]
		if self.bendAxis=='z': self.upVector=[0.0,0.0,-self.bendDirection]

		if self.orientAxis=='x': self.aimVector=[self.bendDirection,0.0,0.0]
		if self.orientAxis=='y': self.aimVector=[0.0,self.bendDirection,0.0]
		if self.orientAxis=='z': self.aimVector=[0.0,0.0,self.bendDirection]

		if mc.objExists(self.baseTwist):

			conn=False
			for a in ['.r','.rx','.ry','.rz']:
				if mc.connectionInfo(self.baseTwist+a,id=True):
					conn=True
			if not conn:
				mc.orientConstraint(self.joints[0],self.baseTwist,sk=self.orientAxis)

		# load ik2Bsolver - ikRPSolver does not work well with this setup

		mel.eval('ik2Bsolver')

		self.create()

		if preferredAngleWarning:
			raise Warning('Warning: Joints are co-linear and no preferred angles were set. Results may be unpredictable.')
Esempio n. 3
0
def uniqueNames(*args,**keywords):
	
	"""
With no keywords, returns a unique version of the given name(s).
With re=True or raiseException=True : Ensures unique names are used in the scene and raises an error if there are duplicates present.
With rn=True or rename=True : renames any object which have duplicate names.
	"""
	
	rename=False
	raiseException=False
	validate=False
	
	shortNames=\
	{
		'rn':'rename',
		'v':'validate',
		're':'raiseException'
	}
	
	for k in keywords:
		if k in locals():
			exec(k+'=keywords[k]')
		elif k in shortNames:
			exec(shortNames[k]+'=keywords[k]')
	
	if len(args)==0: args=mc.ls(sl=True)
	if len(args)==0: args=mc.ls()

	sel=[]
	for a in args:
		sel.extend(iterable(a))
		
	shapes=[]	
	for s in sel:
		if mc.objExists(s) and shape(s)==s:
			shapes.append(s)
			
	sel=removeAll(shapes,sel)+shapes
	
	if validate:
		rename=False
		raiseException=False	
	
	if rename:
		raiseException=False
		validate=False	
		
	if raiseException:
		rename=False
		validate=False	
	
	max=0
	if rename or validate or raiseException:
		max=1
		
	
	names=[]
	nonUnique=[]
	newNames={}
	baseNameRE=re.compile('(^[^0-9].*[^0-9])')
		
	for s in sel:

		sn=iterable(s.split('|'))[-1]
		ln=hierarchyOrder(removeDuplicates(mc.ls(sn,l=True)),r=True)
		
		if len(ln)>max:

			try:
				baseName=baseNameRE.match(sn).group(0)
			except:
				baseName=sn
				
			i=1
			rn=s
			un=[]
			while mc.objExists(rn) or len(un)<len(ln):
				rn=baseName+str(i)
				if not mc.objExists(rn):
					un.append(rn)
				i+=1
			
			names.append(un[0])
					
			for i in range(0,len(ln)):
				if validate or rename: 
					newNames[ln[i]]=un[i]
					if rename:
						mc.rename(ln[i],un[i])
				else:
					nonUnique.append(ln[i])
		else:
			names.append(s)

	if raiseException:
		if len(nonUnique)>0:
			print('##Non-unique names:##\n'+str(nonUnique))
			raise Exception('Non-unique names found.')
		return nonUnique
		
	elif validate or rename:
		return newNames
		
	else:
		if len(sel)==1 and len(names)==1:
			return names[0]
		else:
			return names