Esempio n. 1
0
def initialize(context):
    context.asserts  = symbols('SPY','ZSL', 'KOLD', 'GLD')
    context.bonds    = symbol('SHY')
    context.universe = symbols('SPY','ZSL', 'KOLD', 'GLD', 'SHY')
    
    context.top_n_by_momentum = pd.Series() 
    #Choose X stocks out of portfolio of Y stocks- how many stocks to hold - top X by momentum 
    context.num_stocks=3
    #Lookback for momentum calculation
    context.momentum_days=60
    #Set context.trend to 0 to reject any stocks with negative momentum, set to -1 to accept stocks with negative momentum
    context.trend =0.0
    context.stocks=[] 
Esempio n. 2
0
    def getCurrentPrice(self,
                        zipline_data: BarData,
                        alloc_weights: np.array = None) -> float:
        """Compute and return the current asset price (using stored
        component asset allocation weights) or supplied override allocation
        weights.
        
        Arguments:
            zipline_data {BarData} -- Instance zipline data bundle.
        
        Keyword Arguments:
            alloc_weights {np.array} -- Alternate allocation weights to be used
                                        instead of stored allocation weights
                                        (default: {None}).
        
        Returns:
            float -- Synthetic ETF price at the current time step.
        """

        # Getting current component asset prices
        current_asset_prices = np.array(
            zipline_data.current(symbols(*self.tickers), 'price'))

        if alloc_weights is None:
            alloc_weights = self.alloc_weights

        # Comuting current price (dot product b/w current prices and alloc)
        return np.dot(current_asset_prices, alloc_weights)
Esempio n. 3
0
def initialize(context):
    # set_symbol_lookup_date('2009-01-01')
    context.cost = 0.06  # (round trade cost) 0.03 per share
    context.secs = symbols('AAPL', 'GOOGL')
    context.drift = 0
    context.lag = 1
    context.c_val = 0.40  # critical level for ADF test
    
    # Money Management
    context.leverage_limit = 0.1
    
    # Set the no-trade-region
    context.dev_upper_threshold = 0.2
    context.dev_lower_threshold = 0.1
    
    context.freq = 5  # mins
    context.lookback = 100  # periods Note: 390 mins/6.5 hours per day
    context.trade_bars = 5  #
    context.freq_counter = 0  # Count the bars in tartget frequency, context.freq
    context.base_counter = 0  # Count the bars in base frequncy, 1m or 1d
    
    #  initialize the holders
    context.past_prices = {secs:[] for secs in context.secs}
    context.weights = []
    context.prices = []
    context.pct_allocation = []
Esempio n. 4
0
def initialize(context):
    """
    Called once at the start of the algorithm.
    """

    c = context

    c.etf_universe = StaticAssets(
        symbols('XLY', 'XLP', 'XLE', 'XLF', 'XLV', 'XLI', 'XLB', 'XLK', 'XLU'))
    c.alphas = pd.DataFrame()

    # Rebalance every day, 1 hour after market open.
    schedule_function(
        rebalance,
        date_rules.every_day(),
        time_rules.market_open(hours=1),
    )

    # Record tracking variables at the end of each day.
    schedule_function(
        record_vars,
        date_rules.every_day(),
        time_rules.market_close(),
    )

    # Create our dynamic stock selector.
    attach_pipeline(make_pipeline(context), 'pipeline')
    attach_pipeline(make_pipeinit(context), 'pipeinit')

    c.first_trading_day = True
    c.factor_name_list = make_factor().keys()
def initialize(context):
    schedule_function(func=trade,
                      date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_open(),
                      half_days=True)
    schedule_function(func=cancel,
                      time_rule=time_rules.market_close(minutes=5),
                      date_rule=date_rules.every_day(),
                      half_days=True)
    schedule_function(func=reorder,
                      time_rule=time_rules.market_open(minutes=5),
                      date_rule=date_rules.every_day(),
                      half_days=True)
    context.asserts = symbols('SPY')
    context.bonds = symbol('SHY')
    context.rebalance_date = 0
    context.fired = False
    context.rebalance_inteval = 'D'  #'Q', #'D', #'M' #'Q' #'Y'
    context.top_n_by_momentum = pd.Series()
    #Choose X stocks out of portfolio of Y stocks- how many stocks to hold - top X by momentum
    context.stocks = 1
    #Lookback for momentum calculation
    context.momentum_days = 60
    #set at less than 1 to ensure no leverage
    context.leverage_buffer = 0.99
    #Set to 0 to reject any stocks with negative momentum, set to -1 to accept stocks with negative momentum
    context.trend = 0.0
    context.reorder_dict = {}
Esempio n. 6
0
def handle_data(context, data):
    print context.datetime.tz_convert(pytz.timezone("Asia/Shanghai"))
    import pandas as pd

    # print data.history(symbols("000001.SZ"), ["price","volume"], 10,
    #                    '1d').iloc[:,1]
    # print data.history(symbols("000002.SZ"), "price", 2, '1m').iloc[0]
    print data.history(symbols("600000.SH"), "close", 1, '1d')
def initialize(context):
    schedule_function(func=trade,
                      date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_open(),
                      half_days=True)
    context.asserts = symbols('SPY', 'SHY', 'TLT', 'GLD')
    context.asserts_position = [0.25, 0.25, 0.25, 0.25]
    context.rebalance_inteval = 'Q'  #'Q', #'D', #'M' #'Q' #'Y'
    context.rebalance_date = 0
    context.fired = False
def initialize(context):
    # -----------------------------------------------------------------------------------------------
    # YAHOO_SYM_LST=QQQ,TLT,IEF,SLV,GLD,XLI,XLU zipline ingest -b yahoo_direct
    c = context
    c.STOCKS = symbols('QQQ')
    c.BONDS = symbols('TLT', 'IEF')
    c.LEV = 1.00
    c.wt = {}
    c.A = symbol('SLV')
    c.B = symbol('GLD')
    c.C = symbol('XLI')
    c.D = symbol('XLU')
    c.MKT = symbol('QQQ')
    c.VOLA = 126
    c.LB = 1.00
    c.BULL = 1
    c.COUNT = 0
    c.OUT_DAY = 0
    c.RET_INITIAL = 80
Esempio n. 9
0
    def updateParameters(self, zipline_data: BarData):
        """Update ETF parameters; specifically, the asset allocations weights,
        the log return (over the configuration lookback window), the variance,
        and the synthetic ETF prices over the lookback window.
        
        Arguments:
            zipline_data {BarData} -- Instance zipline data bundle.
        """

        # Get historical price data for lookback window from config
        historical_data = zipline_data.history(
            symbols(*self.tickers),
            'price',
            bar_count=config.setf_lookback_window,
            frequency=config.setf_data_frequency)

        # Filling na values
        historical_data = historical_data.fillna(method='bfill')
        historical_data = historical_data.fillna(method='ffill')

        # Computing prices, restructuring per the period in the configuration
        setf_prices = np.array([])
        first_run = True  # Flag for first run
        for idx, row in historical_data.iterrows():
            if (self.backtest_util.isRestructureTriggered(current_date=idx,
                                                          log_flag=False)
                    or first_run):
                # Recompute allocation weights
                alloc_weights = np.array(row / row.sum())
                # Update first run flag
                first_run = False
            # Computing synthetic ETF price
            setf_price = np.dot(alloc_weights, row.values)
            # Appending to prices array
            setf_prices = np.append(setf_prices, setf_price)

        if (np.count_nonzero(np.isnan(setf_prices)) > 0):
            logging.error('NA values detected in Synthetic ETF prices')
            raise Exception

        # Computing ETF log returns
        self.log_rets = np.diff(np.log(setf_prices))

        # Computing single-period ETF log return (sum of log returns)
        self.period_log_ret = np.sum(self.log_rets)

        # Computing ETF variance
        self.variance = np.var(self.log_rets)

        # Casting synthetic ETF prices to DataFrame with original index, binding
        self.setf_prices = pd.DataFrame(setf_prices,
                                        index=historical_data.index)
def initialize(context):
    # -----------------------------------------------------------------------------------------------
    c = context
    c.STOCKS = symbols('QQQ')
    c.BONDS = symbols('TLT', 'IEF')
    c.LEV = 1.00
    c.wt = {}
    c.A = symbol('SLV')
    c.B = symbol('GLD')
    c.C = symbol('XLI')
    c.D = symbol('XLU')
    c.MKT = symbol('QQQ')
    c.VOLA = 126
    c.LB = 1.00
    c.BULL = 1
    c.COUNT = 0
    c.OUT_DAY = 0
    c.RET_INITIAL = 80
    # -----------------------------------------------------------------------------------------------

    schedule_function(daily_check, date_rules.every_day(),
                      time_rules.market_open(minutes=140))
    schedule_function(record_vars, date_rules.every_day(),
                      time_rules.market_close())
def initialize(context):
    schedule_function(func=trade, date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_open(),half_days=True)
    context.asserts = symbols('SPY','IEF')

    context.rebalance_date = 0
    context.fired = False
    context.rebalance_inteval = 'M'#'Q', #'D', #'M' #'Q' #'Y'

    context.asserts_position = [0.5, 0.5]
    context.volatility_policy = True
    #unused if volatility_policy is false
    context.volatility_days = 252
    context.volatility_price_history = 66
    #set at less than 1 to ensure no leverage
    context.leverage_buffer=0.90
def initialize(context):
    c = context

    # Some Risk-On universes
    core_etf = symbols('QQQ', 'XLP', 'TLT', 'IEF')
    tact_etf = symbols('XLV', 'XLY', 'TLT', 'GLD')

    VAAG12 = symbols('SPY', 'IWM', 'QQQ', 'VGK', 'EWJ', 'VWO', 'VNQ', 'GSG',
                     'GLD', 'TLT', 'LQD', 'HYG')
    VAAG4 = symbols('SPY', 'VEA', 'VWO', 'BND')

    c.RISK = VAAG4  # Which Riskasset universe to use?

    alletf = symbols('QQQ', 'XLP', 'TLT', 'IEF', 'SPY', 'IWM', 'QQQ', 'VGK',
                     'EWJ', 'VWO', 'VNQ', 'GSG', 'GLD', 'TLT', 'LQD', 'HYG',
                     'XLV', 'XLY', 'GLD', 'VEA')  # 'TLO' repleced by 'TLT'
    # Some Risk Off (Cash) universes
    c.CASH = symbols('SHY', 'IEF', 'LQD')

    schedule_function(define_weights, date_rules.month_end(Month_Offset),
                      time_rules.market_open(minutes=64))
    log.info('define_weights for last trading day of the month')

    schedule_function(trade_sell, date_rules.month_end(Month_Offset),
                      time_rules.market_open(minutes=65))
    log.info('trade_sell for last trading day of the month')

    if TplusX > 0:
        schedule_function(
            trade_buy, date_rules.month_start(max(0,
                                                  TplusX - 1 - Month_Offset)),
            time_rules.market_open(minutes=66))
        log.info('trade_buy for month day ' +
                 str(max(0, TplusX - Month_Offset)))
    else:
        schedule_function(trade_buy, date_rules.month_end(Month_Offset),
                          time_rules.market_open(minutes=66))
        log.info('trade_buy last trading day of the month')

    stocks = core_etf + tact_etf
    context.sell = {}
    context.buy = {}

    for stock in stocks:
        context.sell[stock] = 0
        context.buy[stock] = 0

    context.difference_perc = 0.02

    context.stops = {}
    context.stoploss = 0.30
    context.stoppedout = []
def make_pipeline():
    """
    A function to create our dynamic stock selector (pipeline). Documentation
    on pipeline can be found here:
    https://www.quantopian.com/help#pipeline-title
    """

    base_universe = StaticAssets(
        symbols('XLY', 'XLP', 'XLE', 'XLF', 'XLV', 'XLI', 'XLB', 'XLK', 'XLU'))

    # Factor of yesterday's close price.
    yesterday_close = USEquityPricing.close.latest

    pipeline = Pipeline(columns={
        'close': yesterday_close,
    },
                        screen=base_universe)
    return pipeline
Esempio n. 14
0
def initialize(context):

    add_history(190, '1d', 'price')
    add_history(365, '1d', 'price')

    context.syms = symbols('AAPL', 'AXP', 'BA', 'CAT', 'CSCO', 'CVX', 'DD', 'DIS', 'GE', 'GS', 'HD', 'IBM', 'INTC', 'JNJ', 'JPM', 'KO', 'MCD', 'MMM', 'MRK', 'MSFT', 'NKE', 'PFE', 'PG', 'TRV', 'UNH', 'UTX', 'V', 'VZ', 'WMT', 'XOM')

    context.stocks_to_long = 10
    context.stocks_to_short = 10

    context.day = 0
    context.n = 0

    context.weekCounter = 0 
    


    algo.set_commission(commission.PerShare(cost=0.15))
Esempio n. 15
0
def initialize(context):

    spy_tlt = StaticAssets([symbol('AAPL'), symbol('IBM')])

    print(symbol('AAPL'), symbols('AAPL'))

    # Create an arbitrary factor
    price = USEquityPricing.close.latest

    pipe = Pipeline(screen=spy_tlt, columns={
        'price': price,
    })

    attach_pipeline(pipe, 'my_pipeline')

    schedule_function(rebalance, date_rules.every_day())

    pass
Esempio n. 16
0
def initialize(context):
    attach_pipeline(make_pipeline(), 'data_pipeline')

    context.technical_indicator_states = {}
    context.window_length = 7
    context.benchmark = deque(maxlen=context.window_length)
    context.benchmark_asset = symbol('SPY')
    context.benchmark_assets = symbols('QQQ', 'SPY')

    #context.classifier = RandomForestClassifier() # Use a random forest classifier
    context.classifier = DecisionTreeClassifier(max_depth=5, max_leaf_nodes=10)

    # Clasifier training data
    context.features = [
        'RSI', 'EMA', 'MACD', 'SMA_5', 'SMA_10', 'bb_lower', 'bb_middle',
        'bb_upper'
    ]
    context.response = ['Class']
    context.X = pd.DataFrame(
        columns=context.features)  # Independent, or input variables
    context.Y = pd.DataFrame(
        columns=context.response)  # Dependent, or output variable

    context.prediction = {}  # Stores most recent prediction

    context.tick = 0
    context.total_buy = 0
    context.positions = None
    context.position_adjustment_days = 5  # Number of days to wait before adjusting positions
    context.min_data_points = 500
    context.max_data_points = 1500

    schedule_function(rebalance, date_rules.every_day(),
                      time_rules.market_open(minutes=1))
    schedule_function(record_vars, date_rules.every_day(),
                      time_rules.market_close())
    set_benchmark(symbol('SPY'))
    # Turn off the slippage model
    set_slippage(slippage.FixedSlippage(spread=0.0))
    # Set the commission model (Interactive Brokers Commission)
    set_commission(commission.PerShare(cost=0.01, min_trade_cost=1.0))
def initialize(context):
    context.universe = StaticAssets(symbols(
        'XLY',  # Select SPDR U.S. Consumer Discretionary
        'XLP',  # Select SPDR U.S. Consumer Staples
        'XLE',  # Select SPDR U.S. Energy
        'XLF',  # Select SPDR U.S. Financials
        'XLV',  # Select SPDR U.S. Healthcare
        'XLI',  # Select SPDR U.S. Industrials
        'XLB',  # Select SPDR U.S. Materials
        'XLK',  # Select SPDR U.S. Technology
        'XLU',  # Select SPDR U.S. Utilities
    ))

    #     my_pipe = Pipeline()
    my_pipe = make_pipeline(context)

    # context.universe = StaticAssets(etfs)
    attach_pipeline(my_pipe, 'my_pipeline')

    schedule_function(func=rebalance,
                      date_rule=date_rules.month_end(days_offset=2),
                      # date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_close(minutes=30))
Esempio n. 18
0
    def updateWeights(self, zipline_data: BarData) -> np.array:
        """Update current weights of the component assets; this recomputes the
        price-weighted allocation as of the date of the current `zipline_data`.
        
        Arguments:
            zipline_data {BarData} -- Instance zipline data bundle.
        
        Returns:
            np.array -- Array of asset weights.
        """

        # Getting current component asset prices
        current_asset_prices = np.array(
            zipline_data.current(symbols(*self.tickers), 'price'))

        # Computing current sum
        current_sum = np.sum(current_asset_prices)

        # Binding allocation weights (list and dict)
        self.alloc_weights = current_asset_prices / current_sum
        self.alloc_weights_dict = dict(zip(self.tickers, self.alloc_weights))

        # Return new weights
        return self.alloc_weights
Esempio n. 19
0
def initialize(context):
    # Manually define stocks instead of downloading a universe with Fetch or using a cross section with set_universe
    context.stocks = symbols('AAPL', 'IBM', 'CSCO', 'SYN')

    # Dictionary of durations, optional for any order
    context.duration = {}

    # Inside the data loop, keep track of commited cash for the new orders.
    #  The portfolio cash is not updated on an intra cycle time scale yet.
    context.cashCommitedToBuy = 0
    context.cashCommitedToSell = 0

    # set a more realistic commission for IB
    set_commission(commission.PerShare(cost=0.014, min_trade_cost=1.4))

    # Prevent shorting, not needed here but it will stop
    #  runaway code, like if you buy condition goes nuts
    #  borrowing uncontrollably.
    set_long_only()

    logging.info(
        "---Prices below reflect market price or average held value at time of action and"
        + " NOT the value of the transactions. Use the Run Full Backtest" +
        " button and view the transactions tab to view real prices.---")
Esempio n. 20
0
def initialize(context):
    # these must ALWAYS be present!
    context.transforms = []
    context.algo_rules = []
    context.max_lookback = 63
    context.outstanding = {}  # orders which span multiple days

    context.raw_data = {}

    #############################################################
    # set the following parameters as required

    context.show_positions = True
    # select records to show in algo.show_records()
    context.show_records = True

    # replace cash_proxy with risk_free if cantec.allow_cash_proxY_replacement is True
    # and cash_proxy price is <= average cash_proxy price over last context.cash_proxy_lookback days
    context.allow_cash_proxy_replacement = False
    context.cash_proxy_lookback = 43  # must be <= context.max_lookback

    context.update_metrics = False
    # to calculate Sharpe ratio
    context.calculate_SR = False
    context.SR_lookback = 63  # must be <= context.max_lookback
    context.SD_factor = 0

    # position only changed if percentage change > threshold
    context.threshold = 0.01

    # the following can be changed
    context.market_proxy = symbols('VFINX')[0]
    context.risk_free = symbols('VFISX')[0]
    # context.market_proxy = symbols('SPY')[0]
    # context.risk_free = symbols('SHY')[0]

    set_commission(commission.PerTrade(cost=10.0))
    context.leverage = 1.0
    #################################################################
    # configure strategies

    context.rebalance_interval = 3  # set interval to n = no of periods (default: months)
    # if you want to change default period, change schedule reallocate below

    # Strategy 1

    rs0003 = StrategyParameters(
        context,
        name='rs0003',
        portfolios=[symbols('NHMAX', 'FAGIX', 'VFIIX')],
        # portfolios=[symbols('HYD','HYD','MBB')],
        portfolio_allocation_modes=['EW'],
        portfolio_allocation_kwargs=[{}],
        security_weights=[None],
        portfolio_allocation_formulas=[None],
        scoring_methods=['RS'],
        scoring_factors=[{
            '+momentum': 1.0
        }],
        n_tops=[1],
        protection_modes=['BY_RULE'],
        protection_rules=['smma_rule'],
        protection_formulas=[None],
        cash_proxies=[symbol('VFISX')],
        # cash_proxies=[symbol('SHY')],
        strategy_allocation_mode='FIXED',
        portfolio_weights=[1.0],
        strategy_allocation_formula=None,
        strategy_allocation_rule=None)

    Configurator(context, define_transforms, define_rules, strategies=[rs0003])

    ############################
    # configure algorithm

    algo = Algo(context,
                strategies=[rs0003.strategy],
                allocation_model=AllocationModel(context,
                                                 mode='EW',
                                                 weights=None,
                                                 formula=None),
                regime=None)
    ###########################################################################################################
    # generate algo data every day at close
    schedule_function(algo.update_data, date_rules.every_day(),
                      time_rules.market_close())

    # daily functions to handle GTC orders
    schedule_function(algo.check_for_unfilled_orders, date_rules.every_day(),
                      time_rules.market_close())
    schedule_function(algo.fill_outstanding_orders, date_rules.every_day(),
                      time_rules.market_open())

    if context.update_metrics:
        # calculate metrics every day
        schedule_function(algo.update_metrics, date_rules.every_day(),
                          time_rules.market_close())

    if context.show_positions:
        schedule_function(algo.show_positions,
                          date_rules.month_start(days_offset=0),
                          time_rules.market_open())

    if context.show_records:
        # show records every day
        # edit the show_records function to include records required
        schedule_function(algo.show_records, date_rules.every_day(),
                          time_rules.market_close())

    schedule_function(algo.rebalance, date_rules.month_end(days_offset=2),
                      time_rules.market_open())
Esempio n. 21
0
def initialize(context):

    context.record_rank = {}
    context.save2mysql = 0
    # 模型训练参数
    context.horizon = 6
    context.percent = 5
    context.model_name = 'adaBoost'
    context.rolling = 1  # 是否为滚动,0为不滚动
    context.ishistory = 0  #是否用历史分类。0为不使用
    context.train_period = 12 * 1
    context.i = 0
    set_slippage(slippage.FixedSlippage(spread=0.00))
    set_commission(commission.PerDollar(cost=0.00325))

    month = 21
    week = 5
    rf = 0.025
    c = 252

    if context.namespace["fund_type"] == 'stock':
        benchmark = '000300.SH'
        fund_type = 1
    elif context.namespace["fund_type"] == 'hybrid':
        benchmark = '000300.SH'
        fund_type = 2
    elif context.namespace["fund_type"] == 'bond':
        benchmark = '037.CS'
        fund_type = 3
    # 选择基金池和benchmark
    ben_sid = symbol(benchmark).sid
    df_stock = df.query("update_time == update_time.max() and type_code=={"\
                        "type}".format(type = fund_type))
    # 基金900 开头的不需要,专门去掉
    df_stock = df_stock[df_stock["fund_code"] < '900000'].fund_code + ".OF"
    sfilt = SpecificAssets(symbols(
        benchmark, *tuple(df_stock)))  # 使用到的数据,包括基金和对应benchmark指数
    sample_filt = SpecificAssets(symbols(
        *tuple(df_stock)))  # 只包含基金,因为评级不应该包含benchmark,故在事后screen去掉benchmark

    # 只包含基金,因为评级不应该包含benchmark,故在事后screen去掉benchmark
    ## 16个因子指标
    down_sharpe = Down_sharpe(window_length=9 * month, rf=rf, c=c, mask=sfilt)
    drawdown = Drawdown(window_length=9 * month, mask=sfilt)
    dvar = Down_variation(window_length=9 * month, rf=rf, c=c, mask=sfilt)
    mean_r = Average_return(window_length=9 * month, mask=sfilt)
    lasting = Lasting(window_length=9 * month,
                      mask=sfilt,
                      time=6 * month,
                      percent=20)
    emr = Emr(window_length=9 * month, mask=sfilt, time=6 * month)
    rlt_var = Negative_variation(window_length=9 * month, c=c, mask=sfilt)
    mcv_in = Mcv_in(window_length=9 * month,
                    rf=rf,
                    c=c,
                    mask=sfilt,
                    time=week,
                    index_sid=ben_sid)
    rank_stable = Rank_stable(window_length=9 * month,
                              mask=sfilt,
                              time=6 * month)
    select_time, select_stock = CL(window_length=9 * month,
                                   rf=rf,
                                   mask=sfilt,
                                   time=week,
                                   index_sid=ben_sid)
    hit_rate = Hit_rate(window_length=10 * month,
                        mask=sfilt,
                        time=6 * month,
                        time_window=9 * month,
                        index_sid=ben_sid)
    value_at_risk = Value_at_risk(window_length=9 * month,
                                  mask=sfilt,
                                  q_value=5,
                                  time=6 * month)
    beta_in = Beta_in(window_length=9 * month,
                      mask=sfilt,
                      rf=rf,
                      time=week,
                      index_sid=ben_sid)
    bias_in = Bias_in(window_length=9 * month, mask=sfilt, time=126)
    ir = Information_ratio(window_length=9 * month,
                           mask=sfilt,
                           time=1,
                           index_sid=ben_sid)
    # 预测因变量Y
    _ry = Lag_Return(window_length=context.horizon * month, mask=sfilt)
    _sp = Lag_Sharpe(window_length=context.horizon * month, mask=sfilt)

    pipe = Pipeline(columns={
        "dhsp": down_sharpe,
        "drwd": drawdown,
        "dvar": dvar,
        "mean_r": mean_r,
        "lasting": lasting,
        "emr": emr,
        "rlt_var": rlt_var,
        "mcv_in": mcv_in,
        "rank_stable": rank_stable,
        "select_time": select_time,
        "select_stock": select_stock,
        "hit_rate": hit_rate,
        "value_at_risk": value_at_risk,
        "beta_in": beta_in,
        "bias_in": bias_in,
        "ir": ir,
        "_ry": _sp
    },
                    screen=sample_filt)

    attach_pipeline(pipe, 'my_pipeline')
    set_max_leverage(1.1)
    schedule_function(rebalance,
                      date_rule=date_rules.month_start(),
                      time_rule=time_rules.market_open())

    # 初始化记录变量
    context.rank_score = pd.Series()
    context.f = pd.Panel()
    context.f_dict = {}
    context.reb_flag = False
    context.B = {}
Esempio n. 22
0
def initialize(context):
    # we will be trading in AMZN and WMT shares
    context.stocks = symbols('AMZN', 'WMT')
    context.bet_amount = 100000
    context.long = 0
Esempio n. 23
0
    def initialize(self, context):
        super(TradingSignalAlgorithm, self).initialize(context)

        # set universe
        context.stocks = self.all_portfolios[self.grp][self.subgrp]['stocks'] if self.stocks is None else symbols(*self.stocks)
        if self.verbose: print(context.stocks)

        # initialise weights and target allocation
        context.weights = False
        context.target_allocation = dict(zip(context.stocks, self.initial_weights))  # initialise target allocations
Esempio n. 24
0
    def initialize(self, context):
        super(OptAlgorithm, self).initialize(context)

        # set universe
        context.stocks = self.all_portfolios[self.grp][self.subgrp]['stocks'] if self.stocks is None else symbols(*self.stocks)
        if self.verbose: print(context.stocks)
        context.weights = False
        context.target_allocation = dict(zip(context.stocks, [0]*len(context.stocks)))  # initialise target allocations to zero

        context.tick = 0
Esempio n. 25
0
 def _check_valid_parameters(self, context, strategy):
     N = len(strategy.portfolios)
     s = strategy
     self._check_valid_parameter(context, s, strategy.portfolios, 'portfolios', list, N, list, ''),
     self._check_valid_parameter(context, s, strategy.portfolio_allocation_modes, 'portfolio_allocation_modes',
                                 list, N, str, VALID_PORTFOLIO_ALLOCATION_MODES),
     self._check_valid_parameter(context, s, strategy.security_weights, 'security_weights', list, N, list, ''),
     self._check_valid_parameter(context, s, strategy.portfolio_allocation_formulas, 'portfolio_allocation_formulas',
                                 list,
                                 N, str, VALID_PORTFOLIO_ALLOCATION_FORMULAS),
     self._check_valid_parameter(context, s, strategy.scoring_methods, 'scoring_methods', list, N,
                                 str, VALID_SCORING_METHODS),
     self._check_valid_parameter(context, s, strategy.scoring_factors, 'scoring_factors', list, N, dict, ''),
     self._check_valid_parameter(context, s, strategy.n_tops, 'n_tops', list, N, int, '')
     self._check_valid_parameter(context, s, strategy.protection_modes, 'protection_modes', list, N,
                                 str, VALID_PROTECTION_MODES),
     self._check_valid_parameter(context, s, strategy.protection_rules, 'protection_rules', list, N, str, ''),
     self._check_valid_parameter(context, s, strategy.protection_formulas, 'protection_formulas', list, N,
                                 str, VALID_PROTECTION_FORMULAS),
     self._check_valid_parameter(context, s, strategy.cash_proxies, 'cash_proxies', list, N, type(symbols('SPY')[0]),
                                 ''),
     self._check_valid_parameter(context, s, strategy.strategy_allocation_mode, 'strategy_allocation_mode', str,
                                 1, str, VALID_STRATEGY_ALLOCATION_MODES)
     self._check_valid_parameter(context, s, strategy.portfolio_weights, 'portfolio_weights', list, N, float, ''),
     self._check_valid_parameter(context, s, strategy.strategy_allocation_formula, 'strategy_allocation_formula',
                                 str,
                                 1, str, VALID_STRATEGY_ALLOCATION_FORMULAS)
     self._check_valid_parameter(context, s, strategy.strategy_allocation_rule, 'strategy_allocation_rule', str,
                                 1, str, '')
Esempio n. 26
0
def initialize_portfolio(verbose=False):
    """Initialises pre-assembled fixed basket of ETFs, each with their own predefined risk buckets

    Currently contains
        Vanguard ETF strategic model portfolios (https://advisors.vanguard.com/iwe/pdf/FASINVMP.pdf)
        - CORES_SERIES
        - CRSP_SERIES
        - SP_SERIES
        - RUSSELL_SERIES
        - INCOME_SERIES
        - TAX_SERIES

        Ray Dalio's All-Weather Portfolio

    Returns:
        dict containing all added portfolios

    """

    if verbose: print('Initialising portfolio database')
    all_portfolios = {}

    # Benchmarks
    # use [] for single ticker, so that it is iterable to avoid error 'int' object is not iterable
    add_portfolio(all_portfolios, 'BENCHMARK', 'SPY', symbols('SPY'), {0: [1]})

    # 11 SPDR sector ETFs
    add_portfolio(all_portfolios, 'SPDR', 'ALL_SECTORS', symbols('XLE', 'XLRE', 'XLF', 'XLV', 'XLC', 'XLI', 'XLY', 'XLP', 'XLB', 'XLK', 'XLU'), {
        0: tuple(1 for _ in range(11))
    })

    # Ray Dalio's All Weather Portfolio. Rebalancing once a year or more, with the following suggested distributions:
    # * 30% stocks (eg VTI)
    # * 40% long-term bonds (eg TLT)
    # * 15% intermediate-term bonds (eg IEF)
    # * 7.5% gold (eg GLD)
    # * 7.5% commodities (eg DBC)
    add_portfolio(all_portfolios, 'DALIO', 'ALL_WEATHER', symbols('VTI', 'TLT', 'IEF', 'GLD', 'DBC'), {
        0: (0.3, 0.4, 0.15, 0.075, 0.075)
    })

    # Vanguard Core Serie
    add_portfolio(all_portfolios, 'VANGUARD', 'CORE_SERIES', symbols('VTI', 'VXUS', 'BND', 'BNDX'), {
        0: (0, 0, 0.686, 0.294),
        1: (0.059, 0.039, 0.617, 0.265),
        2: (0.118, 0.078, 0.549, 0.235),
        3: (0.176, 0.118, 0.480, 0.206),
        4: (0.235, 0.157, 0.412, 0.176),
        5: (0.294, 0.196, 0.343, 0.147),
        6: (0.353, 0.235, 0.274, 0.118),
        7: (0.412, 0.274, 0.206, 0.088),
        8: (0.470, 0.314, 0.137, 0.059),
        9: (0.529, 0.353, 0.069, 0.029),
        10: (0.588, 0.392, 0, 0)
    })
    # add_portfolio(all_portfolios, 'VANGUARD', 'CRSP_SERIES', symbols('VUG', 'VTV', 'VB', 'VEA', 'VWO', 'BSV', 'BIV', 'BLV', 'VMBS', 'BNDX'), {
    #     0: (0, 0, 0, 0, 0, 0.273, 0.14, 0.123, 0.15, 0.294),
    #     1: (0.024, 0.027, 0.008, 0.03, 0.009, 0.245, 0.126, 0.111, 0.135, 0.265),
    #     2: (0.048, 0.054, 0.016, 0.061, 0.017, 0.218, 0.112, 0.099, 0.12, 0.235),
    #     3: (0.072, 0.082, 0.022, 0.091, 0.027, 0.191, 0.098, 0.086, 0.105, 0.206),
    #     4: (0.096, 0.109, 0.03, 0.122, 0.035, 0.164, 0.084, 0.074, 0.09, 0.176),
    #     5: (0.120, 0.136, 0.038, 0.152, 0.044, 0.126, 0.07, 0.062, 0.075, 0.147),
    #     6: (0.143, 0.163, 0.047, 0.182, 0.053, 0.109, 0.056, 0.049, 0.06, 0.118),
    #     7: (0.167, 0.190, 0.055, 0.213, 0.061, 0.082, 0.042, 0.037, 0.045, 0.088),
    #     8: (0.191, 0.217, 0.062, 0.243, 0.071, 0.055, 0.028, 0.024, 0.030, 0.059),
    #     9: (0.215, 0.245, 0.069, 0.274, 0.079, 0.027, 0.014, 0.013, 0.015, 0.029),
    #     10: (0.239, 0.272, 0.077, 0.304, 0.088, 0, 0, 0, 0, 0)
    # })
    # add_portfolio(all_portfolios, 'VANGUARD', 'SP_SERIES', symbols('VOO', 'VXF', 'VEA', 'VWO', 'BSV', 'BIV', 'BLV', 'VMBS', 'BNDX'), {
    #     0: (0, 0, 0, 0, 0.273, 0.140, 0.123, 0.150, 0.294),
    #     1: (0.048, 0.011, 0.03, 0.009, 0.245, 0.126, 0.111, 0.135, 0.265),
    #     2: (0.097, 0.021, 0.061, 0.017, 0.218, 0.112, 0.099, 0.12, 0.235),
    #     3: (0.145, 0.031, 0.091, 0.027, 0.191, 0.098, 0.086, 0.105, 0.206),
    #     4: (0.194, 0.041, 0.0122, 0.035, 0.164, 0.084, 0.074, 0.09, 0.176),
    #     5: (0.242, 0.052, 0.152, 0.044, 0.136, 0.07, 0.062, 0.075, 0.147),
    #     6: (0.29, 0.063, 0.182, 0.053, 0.109, 0.056, 0.049, 0.06, 0.118),
    #     7: (0.339, 0.073, 0.213, 0.061, 0.082, 0.042, 0.037, 0.045, 0.088),
    #     8: (0.387, 0.083, 0.243, 0.071, 0.055, 0.028, 0.024, 0.03, 0.059),
    #     9: (0.436, 0.093, 0.274, 0.079, 0.027, 0.014, 0.013, 0.015, 0.029),
    #     10: (0.484, 0.104, 0.304, 0.088, 0, 0, 0, 0, 0)
    # })
    # add_portfolio(all_portfolios, 'VANGUARD', 'RUSSELL_SERIES', symbols('VONG', 'VONV', 'VTWO', 'VEA', 'VTWO', 'VEA', 'VWO', 'BSV', 'BIV', 'BLV', 'VMBS', 'BNDX'), {
    #     0: (0, 0, 0, 0, 0, 0.273, 0.14, 0.123, 0.15, 0.294),
    #     1: (0.028, 0.026, 0.005, 0.03, 0.009, 0.245, 0.126, 0.111, 0.135, 0.265),
    #     2: (0.056, 0.052, 0.01, 0.061, 0.017, 0.218, 0.112, 0.099, 0.086, 0.105, 0.206),
    #     3: (0.084, 0.079, 0.013, 0.091, 0.027, 0.191, 0.098, 0.086, 0.105, 0.206),
    #     4: (0.112, 0.105, 0.018, 0.122, 0.035, 0.164, 0.084, 0.074, 0.09, 0.176, 0.02),
    #     5: (0.14, 0.131, 0.023, 0.152, 0.044, 0.136, 0.07, 0.062, 0.075, 0.147),
    #     6: (0.168, 0.157, 0.028, 0.182, 0.053, 0.109, 0.056, 0.049, 0.06, 0.118),
    #     7: (0.196, 0.184, 0.032, 0.213, 0.061, 0.082, 0.042, 0.037, 0.045, 0.088),
    #     8: (0.224, 0.210, 0.036, 0.243, 0.071, 0.055, 0.028, 0.024, 0.03, 0.059),
    #     9: (0.252, 0.236, 0.041, 0.274, 0.079, 0.027, 0.014, 0.013, 0.015, 0.029),
    #     10: (0.281, 0.262, 0.045, 0.304, 0.088, 0, 0, 0, 0, 0)
    # })
    # add_portfolio(all_portfolios, 'VANGUARD', 'INCOME_SERIES', symbols('VTI', 'VYM', 'VXUS', 'VYMI', 'BND', 'VTC', 'BNDX'), {
    #     0: (0, 0, 0, 0, 0.171, 0.515, 0.294),
    #     1: (0.015, 0.044, 0.01, 0.029, 0.154, 0.463, 0.265),
    #     2: (0.03, 0.088, 0.019, 0.059, 0.137, 0.412, 0.235),
    #     3: (0.044, 0.132, 0.03, 0.088, 0.12, 0.36, 0.206),
    #     4: (0.059, 0.176, 0.039, 0.118, 0.103, 0.309, 0.176),
    #     5: (0.073, 0.221, 0.049, 0.147, 0.086, 0.257, 0.147),
    #     6: (0.088, 0.265, 0.059, 0.176, 0.068, 0.206, 0.118),
    #     7: (0.103, 0.309, 0.068, 0.206, 0.052, 0.154, 0.088),
    #     8: (0.117, 0.353, 0.079, 0.235, 0.034, 0.103, 0.059),
    #     9: (0.132, 0.397, 0.088, 0.265, 0.018, 0.051, 0.029),
    #     10: (0.147, 0.441, 0.098, 0.294, 0, 0, 0)
    # })
    # add_portfolio(all_portfolios, 'VANGUARD', 'TAX_SERIES', symbols('VUG', 'VTV', 'VB', 'VEA', 'VWO', 'VTEB'), {
    #     1: (0.024, 0.027, 0.008, 0.03, 0.009, 0.882),
    #     2: (0.048, 0.054, 0.016, 0.061, 0.017, 0.784),
    #     3: (0.072, 0.082, 0.022, 0.091, 0.027, 0.686),
    #     4: (0.096, 0.109, 0.03, 0.122, 0.035, 0.588),
    #     5: (0.12, 0.136, 0.038, 0.152, 0.044, 0.49),
    #     6: (0.143, 0.163, 0.047, 0.182, 0.053, 0.392),
    #     7: (0.167, 0.190, 0.055, 0.213, 0.061, 0.294),
    #     8: (0.191, 0.217, 0.062, 0.243, 0.071, 0.196),
    #     9: (0.215, 0.245, 0.069, 0.274, 0.079, 0.098)
    # })

    return all_portfolios
Esempio n. 27
0
def get_data(ENVIRONMENT, tickers, start, end, benchmark, risk_free, cash_proxy):
    
    if ENVIRONMENT == 'ZIPLINE':
        benchmark_symbol = benchmark
        cash_proxy_symbol = cash_proxy
        risk_free_symbol = risk_free
    elif ENVIRONMENT == 'RESEARCH':
        benchmark_symbol = symbols(benchmark)
        cash_proxy_symbol = symbols(cash_proxy)
        risk_free_symbol = symbols(risk_free)

    # data is a Panel of DataFrames, one for each security
    if ENVIRONMENT == 'ZIPLINE': 
        data = load_bars_from_yahoo(
            stocks = list(set(tickers + [benchmark_symbol, cash_proxy_symbol, risk_free_symbol])),
            start = start,
            end = end,
            adjusted=False).transpose(2,1,0)
        data.price = data.close   # use this for comparing to Quantopian 'get_pricing'
    elif ENVIRONMENT == 'RESEARCH':
        data = get_pricing(
            set(tickers + [benchmark_symbol, cash_proxy_symbol, risk_free_symbol]),
            start_date=start,
            end_date = end,
            frequency='daily'
        )      

    # repair unusable data
    # BE CAREFUL!! dropna doesn't change the Panel's Major Index, so NA may still remain!
    # safer to use ffill
    for security in data.transpose(2,1,0):
        data.transpose(2,1,0)[security] = data.transpose(2,1,0)[security].ffill()

    if ENVIRONMENT == 'ZIPLINE':
        other_data = load_bars_from_yahoo(
            stocks=[benchmark_symbol] + [cash_proxy_symbol],
            start=start,
            end=end,
            adjusted=False)           # use this for comparing to Quantopian 'get_pricing'
        other_data.transpose(2,1,0).price = other_data.transpose(2,1,0).close           # use this for comparing to Quantopian 'get_pricing'
    elif ENVIRONMENT == 'RESEARCH':
        other_data = get_pricing(
            [benchmark_symbol] + [cash_proxy_symbol], 
            fields='price',
            start_date= data.major_axis[0], 
            end_date = data.major_axis[-1], 
            frequency='daily',
        )

    other_data = other_data.ffill()

    # need to add benchmark (eg SPY) and cash proxy to data panel
    benchmark = other_data[benchmark_symbol]
    benchmark_rets = benchmark.pct_change().dropna()

    benchmark2 = other_data[cash_proxy_symbol]
    benchmark2_rets = benchmark2.pct_change().dropna()

    # make sure we have all the data we need
    inception_dates = pd.DataFrame([data.transpose(2,1,0)[security].dropna().index[0].date() \
                                    for security in data.transpose(2,1,0)], \
                                   index=data.transpose(2,1,0).items, columns=['inception'])
    inception_dates.loc['benchmark'] = benchmark.index[0].date()
    inception_dates.loc['benchmark2'] = benchmark2.index[0].date()
    print(inception_dates)
    print()

    # check that the end dates coincide
    end_dates = pd.DataFrame([data.transpose(2,1,0)[security].dropna().index[-1].date() \
                                    for security in data.transpose(2,1,0)], \
                                   index=data.transpose(2,1,0).items, columns=['end_date'])
    end_dates.loc['benchmark'] = benchmark.index[-1].date()
    end_dates.loc['benchmark2'] = benchmark2.index[-1].date()
    print(end_dates)

    # this will ensure that the strat and end dates are aligned
    data = data[:,inception_dates.values.max(): end_dates.values.min(),:]
    benchmark_rets = benchmark_rets[inception_dates.values.max(): end_dates.values.min()]
    benchmark2_rets = benchmark2_rets[inception_dates.values.max(): end_dates.values.min()]

    print ('\n\nBACKTEST DATA IS FROM {} UNTIL {} \n*************************************************'
           .format(inception_dates.values.max(), end_dates.values.min()))

    # DATA FROM ZIPLINE LOAD_YAHOO_BARS DIFFERS FROM RESEARCH ENVIRONMENT!
    data.items = ['open_price', 'high', 'low', 'close_price', 'volume', 'price']

    print ('\n\n{}'.format(data))

    return data
Esempio n. 28
0
 def _check_valid_portfolio(self, pfolio):
     if len(pfolio) < 1:
         raise RuntimeError('Portfolio must have at least one item')
     for n in range(len(pfolio)):
         if not isinstance(pfolio[n], type(symbols('SPY')[0])):
             raise RuntimeError('portfolio item {} must be of type '.format(type(symbols('SPY')[0])))
def initialize (context) :
   
    # Algorithm parameters are defined here
    if ENVIRONMENT == 'RESEARCH':    
        context.benchmark = symbols('SPY')
        context.risk_free = symbols('SHY')
        context.cash_proxy = symbols('SHY')
    elif ENVIRONMENT == 'ZIPLINE' or ENVIRONMENT == 'IDE':
        context.benchmark = symbol('SPY')
        context.risk_free = symbol('SHY')
        context.cash_proxy = symbol('SHY')

    context.algo_transforms = [(['price'], ROCP, ['mom_63'], 62), 
                               (['price'], ROCP, ['mom_21'], 20), 
                               (['price'], average_historic_volatility, ['hvol_20'], 63, 20),
                               (['price'], SMA, ['short_mavg'], 21),
                               (['price'], SMA, ['long_mavg'], 63)
                               ]
    
    if ENVIRONMENT == 'ZIPLINE' or ENVIRONMENT == 'IDE':
        context.strategies = {
                                'strategy1': {
                                    'strat_wt' : 1.0,
                                    'strat_type' : 'SIGNAL',
                                    'alloc_type' : 'EQWT',   
                                    'portfolios' : [
                                                    symbols('VHT', 'VGT', 'VCR', 'IBB', 'EDV', 'VB', 'VAW', 
                                                            'TLT')
                                                    ],
                                    'weights' : [1.0],
                                    'n_top' : [1],
                                    'zscore_data' : ['+mom_63', '+mom_21', '-hvol_20'],
                                    'zscore_weights' : [0.7, 0.0, 0.3],
    #                                 'filter' : [lambda x,y: (x > y) & (x > 0), 'mom_21', ('mom_21', context.risk_free)]
    #                                 'filter' : []
                                    'filter' : [lambda x,y: x > y, 'mom_63', ('mom_63', context.risk_free)],
                                    'buy_trigger' : [lambda x,y: (x > y) and (context.buy_flag==False), 
                                                     'short_mavg', 'long_mavg'], 
                                    'sell_trigger' : [lambda x,y : (x < y) and (context.buy_flag==True), 
                                                      'short_mavg', 'long_mavg']
                                    }
                                }
        
    elif ENVIRONMENT == 'RESEARCH':
        context.strategies = {
                                'strategy1': {
                                    'strat_wt' : 1.0,
                                    'strat_type' : 'SIGNAL',
                                    'alloc_type' : 'EQWT',
                                    'portfolios' : [
                                                    [symbols('VHT'), symbols('VGT'), symbols('VCR'), 
                                                     symbols('IBB'), symbols('EDV'), symbols('VB'), 
                                                     symbols('VAW'), symbols('TLT')]
                                                    ],
                                    'weights' : [1.0],
                                    'n_top' : [1],
                                    'zscore_data' : ['+mom_63', '+mom_21', '-hvol_20'],
                                    'zscore_weights' : [0.7, 0.0, 0.3],
                                    # 'filter' : [lambda x,y: (x > y) & (x > 0), 'mom_21', 
                                    #             ('mom_21', context.risk_free)]
    #                                 'filter' : []
                                    'filter' : [lambda x,y: x > y, 'mom_63', ('mom_63', context.risk_free)], 
                                    'buy_trigger' : [lambda x,y: (x > y) and (context.buy_flag==False), 
                                                     'short_mavg', 'long_mavg'],
                                    'sell_trigger' : [lambda x,y : (x < y) and (context.buy_flag==True), 
                                                      'short_mavg', 'long_mavg']
                                    }
                                }

    # have to set this manually 'til I figure how to generate it programmatically from above parameters
    context.max_lookback = 120        # need additional data for recursive indicators like EMA, historic_vol etc.
    
    # set the appropriate time_rule offsets (hours, minutes) for order processing
    context.order_time_rule = time_rules.market_close(hours=0, minutes=1)
    
    context.threshold = 0.0     # only BUY/SELL if asset QTY changes by threshold%
    
    set_commission(commission.PerTrade(cost=0.0))  
    set_slippage(slippage.FixedSlippage(spread=0))
    
    #######################################################################################
    # THE FOLLOWING MUST ALWAYS BE INCLUDED AND MUST PRECEDE ANY SCHEDULED FUNCTIONS!
    # include this check to make sure that the algo parameters are formatted as required
    check_algo_parameters (context)
    # create a set of all the symbols used by the algorithm
    create_symbol_list(context)
    initialize_strat_variables(context)
    if ENVIRONMENT != 'IDE':
        add_strat_history(context)  
    #######################################################################################
    
    schedule_function(generate_strat_data,  
                     # date_rule=date_rules.month_start(days_offset=0),
                     date_rule=date_rules.month_start(days_offset=0),
                     time_rule=time_rules.market_open(hours=0, minutes=1),
                     half_days=True) 

#     schedule_function_by_interval(context, test_signal,  
#                      date_rule=date_rules.every_day(), 
#                      time_rule=time_rules.market_open(hours=0, minutes=5),
#                      half_days=True,
#                      freq=1)    
    
    # the 'freq' parameter is added to the norma schedule_function routine
    # to enable intervals of 'freq' periods - 1,2,3,.....  months
    schedule_function_by_interval(context, rebalance,  
                     date_rule=date_rules.month_start(days_offset=0), 
                     time_rule=time_rules.market_open(hours=0, minutes=5),
                     half_days=True,
                     freq=1)
    
    schedule_function_by_interval(context, handle_orders,  
                     date_rule=date_rules.month_start(days_offset=0), 
                     time_rule=time_rules.market_close(hours=0, minutes=15),
                     half_days=True,
                     freq=1)