Esempio n. 1
0
    def test_empty_pipeline(self):

        # For ensuring we call before_trading_start.
        count = [0]

        def initialize(context):
            pipeline = attach_pipeline(Pipeline(), 'test')

            vwap = VWAP(window_length=10)
            pipeline.add(vwap, 'vwap')

            # Nothing should have prices less than 0.
            pipeline.set_screen(vwap < 0)

        def handle_data(context, data):
            pass

        def before_trading_start(context, data):
            context.results = pipeline_output('test')
            self.assertTrue(context.results.empty)
            count[0] += 1

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[0],
            end=self.dates[-1],
            env=self.env,
        )

        algo.run(
            FakeDataPortal(),
            overwrite_sim_params=False,
        )

        self.assertTrue(count[0] > 0)
Esempio n. 2
0
    def test_before_trading_start(self, test_name, num_days, freq,
                                  emission_rate):
        params = factory.create_simulation_parameters(
            num_days=num_days,
            data_frequency=freq,
            emission_rate=emission_rate)

        def fake_benchmark(self, dt):
            return 0.01

        with patch.object(BenchmarkSource, "get_value",
                          self.fake_minutely_benchmark):
            algo = BeforeTradingAlgorithm(sim_params=params)
            algo.run(FakeDataPortal())

            self.assertEqual(algo.perf_tracker.day_count, num_days)

            self.assertTrue(
                params.trading_days.equals(
                    pd.DatetimeIndex(algo.before_trading_at)),
                "Expected %s but was %s." %
                (params.trading_days, algo.before_trading_at))
    def test_before_trading_start(self, test_name, num_days, freq,
                                  emission_rate):
        params = factory.create_simulation_parameters(
            num_days=num_days,
            data_frequency=freq,
            emission_rate=emission_rate)

        def fake_benchmark(self, dt):
            return 0.01

        with patch.object(BenchmarkSource, "get_value",
                          self.fake_minutely_benchmark):
            algo = BeforeTradingAlgorithm(sim_params=params, env=self.env)
            algo.run(FakeDataPortal(self.env))

            self.assertEqual(len(algo.sim_params.sessions), num_days)

            bts_minutes = days_at_time(params.sessions, time(8, 45),
                                       "US/Eastern")

            self.assertTrue(
                bts_minutes.equals(pd.DatetimeIndex(algo.before_trading_at)),
                "Expected %s but was %s." %
                (params.sessions, algo.before_trading_at))
Esempio n. 4
0
    def test_handle_adjustment(self, set_screen):
        AAPL, MSFT, BRK_A = assets = self.AAPL, self.MSFT, self.BRK_A

        window_lengths = [1, 2, 5, 10]
        vwaps = self.compute_expected_vwaps(window_lengths)

        def vwap_key(length):
            return "vwap_%d" % length

        def initialize(context):
            pipeline = Pipeline()
            context.vwaps = []
            for length in vwaps:
                name = vwap_key(length)
                factor = VWAP(window_length=length)
                context.vwaps.append(factor)
                pipeline.add(factor, name=name)

            filter_ = (USEquityPricing.close.latest > 300)
            pipeline.add(filter_, 'filter')
            if set_screen:
                pipeline.set_screen(filter_)

            attach_pipeline(pipeline, 'test')

        def handle_data(context, data):
            today = get_datetime()
            results = pipeline_output('test')
            expect_over_300 = {
                AAPL: today < self.AAPL_split_date,
                MSFT: False,
                BRK_A: True,
            }
            for asset in assets:
                should_pass_filter = expect_over_300[asset]
                if set_screen and not should_pass_filter:
                    self.assertNotIn(asset, results.index)
                    continue

                asset_results = results.loc[asset]
                self.assertEqual(asset_results['filter'], should_pass_filter)
                for length in vwaps:
                    computed = results.loc[asset, vwap_key(length)]
                    expected = vwaps[length][asset].loc[today]
                    # Only having two places of precision here is a bit
                    # unfortunate.
                    assert_almost_equal(computed, expected, decimal=2)

        # Do the same checks in before_trading_start
        before_trading_start = handle_data

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[max(window_lengths)],
            end=self.dates[-1],
            env=self.env,
        )

        algo.run(
            FakeDataPortal(),
            # Yes, I really do want to use the start and end dates I passed to
            # TradingAlgorithm.
            overwrite_sim_params=False,
        )