plt.savefig('test_r_hesfit_' + np.str(ilc) + '.pdf') return (parmout, covout, freq, tplot, xplot) #!!!!!!!!!!!!!!!!!!! test the code using this program timeall = [] sigall = [] yall = [] nlc = 1 for i in range(nlc): #generate test light curve and add noise datpre = mylcgen(tlo=0, thi=100, dt=0.03, iseed=132423) npre = np.shape(datpre[:, 0])[0] datmean = np.std(datpre[:, 1]) snow = np.ones(npre) / 10 * datmean dat = mrs.myresample(dir='', fname=[''], dtave=2.0, sampmin=0.8, sampcode=3, datin=np.array((datpre[:, 0], datpre[:, 1], snow)).T) ndat = np.shape(dat[:, 0])[0] sig = dat[:, 2] for i in range(ndat): dat[i, 1] = normdis(1, dat[i, 1], sig[i])[0] sigall.append(sig) yall.append(dat[:, 1] + 50)
import numpy as np from mylcgen import * from myrandom import * import matplotlib.pylab as plt import mysinecostrans as msc #generate test light curve and add noise dat = mylcgen(tlo=0, thi=100, dt=2.0, iseed=42342332) ndat = np.shape(dat[:, 0])[0] datmean = np.std(dat[:, 1]) sig = np.ones(ndat) / 10 * datmean for i in range(ndat): dat[i, 1] = normdis(1, dat[i, 1], sig[i])[0] y = dat[:, 1] time = dat[:, 0] tlo = np.min(time) thi = np.max(time) dt = np.mean(time[1:] - time[:-1]) flo = 0.5 / (thi - tlo) fhi = 5. / dt msc.sct(time, y, sig, freq=np.arange(flo, fhi + flo, flo), costrans=0) #test the routine above and do it manually to compare tlo = np.min(time) thi = np.max(time) dt = np.mean(time[1:] - time[:-1])
import numpy as np from mylcgen import * from myrandom import * import matplotlib.pylab as plt import myresample as mrs #generate test light curve and add noise datpre = mylcgen(tlo=0, thi=100, dt=0.03, iseed=34245) ndat = np.shape(datpre[:, 0])[0] datmean = np.std(datpre[:, 1]) sig = np.ones(ndat) / 10 * datmean dat = mrs.myresample(dir='', fname=[''], dtave=2.0, sampmin=0.8, sampcode=3, datin=np.array((datpre[:, 0], datpre[:, 1], sig)).T) ndat = np.shape(dat[:, 0])[0] sig = dat[:, 2] for i in range(ndat): dat[i, 1] = normdis(1, dat[i, 1], sig[i])[0] y = dat[:, 1] + 50 time = dat[:, 0] tlo = np.min(time) thi = np.max(time) dt = np.mean(time[1:] - time[:-1])
##!!!!!!!!!!!!!!!!!!! test the code using this program # # #generate test light curve and add noise cadence = 3.0 timeall = [] sigall = [] yall = [] datpre = mylcgen(tlo=0,thi=100,dt=cadence,iseed=132423) npre = np.shape(datpre[:,0])[0] sig = np.std(datpre[:,1])/10 #add noise sigpre = np.ones(npre)*sig datpre[:,1] = np.random.randn(npre)*sig + datpre[:,1] #add bad data to test sigma clipping datpre[10,1] = datpre[10,1] + 100*sig datpre[5,1] = datpre[5,1] - 40*sig timeall = datpre[:,0] + np.random.randn(npre)*0.1#npre,datpre[:,0],0.1) yall = datpre[:,1] sigall = sigpre