# APT_interface.main(cmd.split()) ## stephen for multi view lbl_file = '/groups/branson/bransonlab/mayank/PoseTF/data/apt_interface/stephen/shdl_stripped_homogeneousims_modified.lbl' mov_files = ['/groups/branson/bransonlab/mayank/PoseTF/data/apt_interface/stephen/fly516/C001H001S0001/C001H001S0001_c.avi', '/groups/branson/bransonlab/mayank/PoseTF/data/apt_interface/stephen/fly516/C002H001S0001/C002H001S0001_c.avi'] out_files = [] for mov_file in mov_files: out_files.append(os.path.splitext(mov_file)[0] + '_interface_test_{}.trk'.format(dstr)) name = 'stephen_test_apt' cmd = '{} -name {} train'.format(lbl_file,name) #APT_interface.main(cmd.split()) cmd = '{} -name {} track -mov {} {} -out {} {}'.format( lbl_file, name, mov_files[0], mov_files[1], out_files[0], out_files[1]) #APT_interface.main(cmd.split()) ## Alice: for projects with trx files. lbl_file = '/groups/branson/bransonlab/mayank/PoseTF/data/alice/multitarget_bubble_expandedbehavior_20180425_modified.lbl' mov_file = '/groups/branson/bransonlab/mayank/PoseTF/data/apt_interface/alice/cx_GMR_SS00168_CsChr_RigD_20150909T111218/movie.ufmf' trx_file = '/groups/branson/bransonlab/mayank/PoseTF/data/apt_interface/alice/cx_GMR_SS00168_CsChr_RigD_20150909T111218/registered_trx.mat' out_file = os.path.splitext(mov_file)[0] + '_interface_test_{}.trk'.format(dstr) name = 'alice_test_apt' cmd = '{} -name {} train'.format(lbl_file,name) #APT_interface.main(cmd.split()) cmd = '{} -name {} track -mov {} -trx {} -out {} -end_frame 1000'.format(lbl_file, name, mov_file, trx_file, out_file) APT_interface.main(cmd.split())
cmd = '-name 20191206T024459 -view 1 -cache /groups/branson/home/kabram/.apt/tp0812543a_6893_40b2_befd_90409dbe6afe -err_file /groups/branson/home/kabram/.apt/tp0812543a_6893_40b2_befd_90409dbe6afe/test1/20191206T024459view0_20191206T0245171.err -type mdn /groups/branson/home/kabram/.apt/tp0812543a_6893_40b2_befd_90409dbe6afe/test1/20191206T024459_20191206T024517.lbl train -use_cache -skip_db' import APT_interface as apt apt.main(cmd.split()) ## import run_apt_expts as rae reload(rae) rae.setup('leap_fly') rae.create_gt_db() ## import APT_interface as apt cmd = '/groups/branson/bransonlab/apt/experiments/data/multitarget_bubble_expandedbehavior_20180425_FxdErrs_OptoParams20181126_dlstripped.lbl -name alice_randsplit_round_4 -cache /nrs/branson/mayank/apt_cache -conf_params use_pretrained_weights False batch_size 8 trange 5 decay_steps 20000 save_step 4000 rrange 10 adjust_contrast False mdn_use_unet_loss True dl_steps 40000 normalize_img_mean False maxckpt 20 -type mdn -train_name no_pretrained -view 1 train -skip_db -use_cache' import os os.environ['CUDA_VISIBLE_DEVICES'] = '' apt.main(cmd.split()) ## import run_apt_expts as rae reload(rae) rae.setup('romain', 0) rae.get_cv_results(num_splits=6) ## import PoseTools import os import glob import APT_interface as apt import apt_expts import re
# import PoseUMDN_dataset # self = PoseUMDN_dataset.PoseUMDN(conf,name='pose_umdn_test') import PoseUNet_dataset self = PoseUNet_dataset.PoseUNet(conf,name='pose_unet_fusion') self.train_unet() ## import os os.environ['CUDA_VISIBLE_DEVICES'] = '' args = '-name pend -cache /home/mayank/temp -type unet /home/mayank/work/poseTF/data/apt/pend_1_stripped_preProcDataCache_scale4_NumChans1_v73.lbl train -use_cache' args = args.split() import APT_interface as apt apt.main(args) ## import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' from poseConfig import aliceConfig as conf import tensorflow as tf import multiResData conf.trange = 5 conf.cachedir += '_dataset' import mdn_keras mdn_keras.training(conf) ## from poseConfig import aliceConfig as conf
gt_file_url = 'https://www.dropbox.com/s/71glyy7bgkry7sm/gtdata_view0.tfrecords?dl=1' gt_file = os.path.join(tdir, 'gt_data.tfrecords') url_lib.urlretrieve(gt_file_url, gt_file) res_file_url = 'https://www.dropbox.com/s/cr702321rvv3htl/alice_view0_time.mat?dl=1' res_file = os.path.join(tdir,'alice_view0_time.mat') url_lib.urlretrieve(res_file_url,res_file) cmd = '-cache {} -name {} -conf_params batch_size {} dl_steps {} op_affinity_graph {} -type {{}} {} train -use_cache '.format(tdir, exp_name, bsz, dl_steps,op_af_graph, lbl_file) ## import h5py R = h5py.File(res_file,'r') for net in net_types: apt.main(cmd.format(net).split()) conf = apt.create_conf(lbl_file, 0, exp_name, tdir, net) # if data_type == 'stephen' and train_type == 'mdn': # conf.mdn_use_unet_loss = False if op_af_graph is not None: conf.op_affinity_graph = ast.literal_eval(op_af_graph.replace('\\', '')) files = glob.glob(os.path.join(conf.cachedir, "{}-[0-9]*").format('deepnet')) files.sort(key=os.path.getmtime) files = [f for f in files if os.path.splitext(f)[1] in ['.index', '']] aa = [int(re.search('-(\d*)', f).groups(0)[0]) for f in files] aa = [b - a for a, b in zip(aa[:-1], aa[1:])] if any([a < 0 for a in aa]): bb = int(np.where(np.array(aa) < 0)[0]) + 1 files = files[bb:] files = files[-1:]