コード例 #1
0
def ripple_minima(chi_file, background_file, background_level, composition,
                  qmin, qmaxinst):
    pwd = os.getcwd()
    if os.path.exists(os.path.join(pwd, 'ripple_minima_test')) is False:
        os.mkdir(os.path.join(pwd, 'ripple_minima_test'))
    ripple_list = []
    gr_list = []
    qmax_min = 18.5
    qmax_max = qmaxinst
    qmax_step = .01
    print 'Start qmax refinement'
    for qmax in np.arange(qmax_min, qmax_max, qmax_step):
        print qmax
        gr_file, bg, q=Calculate.pdfgetx3(
            chi_file,
            background_file,
            background_level,
            composition,
            qmax,
            qmin,
            qmax,
            'QA',
            os.path.join(pwd, 'ripple_minima_test', '@b_ripple_test_'+str(
                qmax).ljust(5,'0')+'.@o'))
        gr_file = os.path.join(pwd, 'ripple_minima_test', os.path.split(
            os.path.splitext(chi_file)[0])[1]+'_ripple_test_'+str(qmax).ljust(5,'0')+'.gr')
        x, y = IO.load_gr_file(gr_file)
        w = y - np.convolve(y, np.ones(3)/3, 'same')
        ripple_sum = np.sum(abs(w))
        ripple_list.append(ripple_sum)
        gr_list.append(gr_file)
    t = np.arange(qmax_min, qmax_max, qmax_step)
    ripple_array=np.array(ripple_list)
    minima_index = signal.argrelextrema(ripple_array, np.greater_equal,
                                        order=2*len(ripple_array)/100)[0]
    minima = ripple_array[minima_index]
    minima_q = t[minima_index]

    maxima_index = signal.argrelextrema(ripple_array, np.less_equal,
                                        order=2*len(ripple_array)/100)[0]
    maxima = ripple_array[maxima_index]
    maxima_q = t[maxima_index]

    plt.plot(t, ripple_array, 'g')
    plt.plot(minima_q, minima, 'o', markerfacecolor='none', mec='r')
    plt.plot(maxima_q, maxima, 'o', markerfacecolor='none', mec='b')
    plt.title('Ripples in PDF')
    plt.xlabel('Qmax (1/A)')
    plt.ylabel('Ripple Cumulative Sum')
    plt.show()
    plt.cla()

    # data_list = []
    # key_list = []
    # for minima_q_point in minima_q:
    #     data = IO.load_gr_file([x for x in gr_list if str(qmax) in x] [0])
    #     data_list_element = data
    #     key_list_element = minima_q_point
    #     data_list.append(data_list_element)
    #     key_list.append(key_list_element)
    # plot_stack(data_list, key_list)

    ziped_minima = zip(minima_q, minima)
    while True:
        for q, value in ziped_minima:
            print 'q= ', q,'rippleness= ', value
        qmax= float(raw_input('Please pick a qmax.  qmax= '))
        gr_file = [x for x in gr_list if str(qmax) in x] [0]
        print gr_file
        x, y = IO.load_gr_file(gr_file)
        plt.plot(x, y)
        plt.show()
        if raw_input('Is this the file you wanted? y/[n] ') == 'y':
            break
    return qmax
コード例 #2
0
def write_pdf(chi_file=None, background_file=None, background_level=None,
              pdf_format='QA', output='@r.@o', qmax='statistics',
              composition=None, qmaxinst=0.0,
              qmin=0.0, relative_max_uncertainty=.90,
              plot_verbose=False, bg_refine_qmin_index=None,
              bg_refine_qmax_index=None):
    """
    Generates the G(r) and F(q) files, potentially using optimized values
    for the background subtraction and qmax determination

    Parameters
    ----------
    chi_file: str
        Location of the chi file to use as the foreground to generate the PDF
    background_file: str
        Location of the chi file to use as the background
    background_level: float
        The background level, if not set automatically generate the background
        scale
    pdf_format: str
        The format of the chi file
    out_put: str
        The naming convention for the output PDF
    qmax: float or {'statistics', 'ripple'}
        If float, the qmax value to be used in the FFT.  If statistics,
        generate qmax by examining the statistical uncertainty of I(Q).  If
        ripple generate the PDFs at various qmax and compare the rippleness
        between the various qmax values
    composition: str
        The compostion of the material to be studied
    qmaxinst: float
        The maximum reliable qmax generated by the detector, if 0.0 the max
        of the chi file
    qmin: float
        The minimum q to be used in the FFT
    relative_max_uncertainty: float [0,1]
        If qmax is statistics the percentile of the uncertainty to except
    plot_verbose: bool
        If true, generate plots
    bg_refine_qmin_index: int
        The lower bound on the range of values to fit between the background
        and foreground for determining the background level.
    bg_refine_qmax_index: int
        The upper bound on the range of values to fit between the background
        and foreground for determining the background level.

    Returns
    -------
    str:
        The file name of the output
    float:
        The background level
    float:
        The qmax
    int:
        The background refine lower bound
    int:
        The background refine upper bound
    """
    #Get composition
    if composition is None:
        composition = pdf_parameters.generate_composition()
    # load up sample I[Q]
    chi, chi_file = IO.load_chi_file(chi_file)
    if os.path.split(chi_file)[0] != '':
        os.chdir(os.path.split(chi_file)[0])
    sample_q, sample, uncertainty = chi[:, 0], chi[:, 1], chi[:, 2]

    if qmaxinst > np.amax(sample_q):
        qmaxinst = np.amax(sample_q)
    elif qmaxinst == 0:
        qmaxinst = np.amax(sample_q)
    # perform background subtraction
    if background_file is not '' and background_level is None:
        # implies that you want to load a background file
        background_level, background_q, background, background_file,  \
        bg_refine_qmin_index, bg_refine_qmax_index = \
            pdf_parameters.background_subtract(sample, background_file,
                                               background_level,
                                               bg_refine_qmin_index=bg_refine_qmin_index,
                                               bg_refine_qmax_index=bg_refine_qmax_index)

        if plot_verbose is True:
            fig, ax = plt.subplots()
            ax.plot(sample_q, sample, 'g', label='Sample')
            ax.legend(loc='upper right')
            plt.title('Sample I(Q)')
            plt.xlabel('Q (1/A)')
            plt.ylabel('Raw Counts')
            plt.savefig('/home/christopher/sample.png',
                        bbox_inches='tight',
                        transparent=True)
            plt.show()

            fig, ax = plt.subplots()
            ax.plot(sample_q, background, 'b',
                    label='Background')
            ax.legend(loc='upper right')
            plt.title('Background (IQ)')
            plt.xlabel('Q (1/A)')
            plt.ylabel('Raw Counts')
            plt.savefig('/home/christopher/background.png',
                        bbox_inches='tight',
                    transparent=True)
            plt.show()

            fig, ax = plt.subplots()
            ax.plot(sample_q, sample, 'g', label='Sample')
            ax.plot(sample_q, background * background_level, 'b',
                    label='Scaled Background')
            ax.plot(sample_q, sample - background * background_level, 'k',
                    label='Sample-Background')
            ax.legend(loc='upper right')
            plt.title('Background Subtraction')
            plt.xlabel('Q (1/A)')
            plt.ylabel('Raw Counts')
            plt.savefig('/home/christopher/integrated_minus_background.png',
                        bbox_inches='tight',
                    transparent=True)
            plt.show()
    # Determine Qmax
    if qmax is 'statistics':
        qmax = pdf_parameters.qmax_statistics(sample_q, sample, uncertainty,
                                        relative_max_uncertainty)
    elif qmax is 'ripple':
        qmax = pdf_parameters.ripple_minima(chi_file, background_file,
                                            background_level, composition,
                                            qmin, qmaxinst)
    if plot_verbose is True:
        plt.plot(sample_q, uncertainty/sample * 100)
        plt.show()
    # PDFGETX3 call/ Generate PDF
    gr_file, background_level, qmax = Calculate.pdfgetx3(chi_file,
                                                     background_file, background_level,
                       composition, qmax, qmin, qmaxinst, pdf_format, output)
    return gr_file, background_level, qmax, bg_refine_qmin_index, bg_refine_qmax_index