def main(met_train, met_test, aqi_train, aqi_test, test): while True: ch = int( input("\n\nchose among the following classifier\n" "1.Rnadom Forrest\n" "2.K-NN\n" "3.SVM\n" "4.Decision Tree\n" "5.exit\n")) if ch == 1: model, accuracy = Classifiers.Random_Forest_Classifier( met_train, met_test, aqi_train, aqi_test) print(model.predict(test)) print(accuracy) elif ch == 2: model, accuracy = Classifiers.KNN(met_train, met_test, aqi_train, aqi_test) print(model.predict(test)) print(accuracy) elif ch == 3: model, accuracy = Classifiers.SVM(met_train, met_test, aqi_train, aqi_test) print(model.predict(test)) print(accuracy) elif ch == 4: model, accuracy = Classifiers.Decision_tree( met_train, met_test, aqi_train, aqi_test) print(model.predict(test)) print(accuracy) elif ch == 5: break
if sys.argv[1] == "gbc": Traindata, TrainLabels, testdata, testlabels = convert_to_tfidf( Traindata, TrainLabels, testdata, testlabels) clf.XGBoost(Traindata, TrainLabels, testdata, testlabels) if sys.argv[1] == "abc": Traindata, TrainLabels, testdata, testlabels = convert_to_tfidf( Traindata, TrainLabels, testdata, testlabels) clf.ADABoost(Traindata, TrainLabels, testdata, testlabels) if sys.argv[1] == "nn": Traindata, TrainLabels, testdata, testlabels = convert_to_tfidf( Traindata, TrainLabels, testdata, testlabels) clf.NN(Traindata, TrainLabels, testdata, testlabels) if sys.argv[1] == "dt": Traindata, TrainLabels, testdata, testlabels = convert_to_tfidf( Traindata, TrainLabels, testdata, testlabels) clf.Decision_tree(Traindata, TrainLabels, testdata, testlabels) if sys.argv[1] == "automl": Traindata, TrainLabels, testdata, testlabels = convert_to_tfidf( Traindata, TrainLabels, testdata, testlabels) clf.autoML(Traindata, TrainLabels, testdata, testlabels) if sys.argv[1] == "lstm": Traindata, TrainLabels, testdata, testlabels, word2id_map, id2word_map = convert_to_word_embeddings( Traindata, TrainLabels, testdata, testlabels) W = get_embedding_weights("word2vec", word2id_map) dl_models.LSTM_train(Traindata, TrainLabels, testdata, testlabels, word2id_map, W) if sys.argv[1] == "cnn": Traindata, TrainLabels, testdata, testlabels, word2id_map, id2word_map = convert_to_word_embeddings( Traindata, TrainLabels, testdata, testlabels) W = get_embedding_weights("word2vec", word2id_map) dl_models.CNN_train(Traindata, TrainLabels, testdata, testlabels,