def mean(tr, params): """ Return DC offset of input trace. Arguments: tr - Trace4.1 schema trace object <class 'Dbptr'> params - Empty <dict> Return Values: <list> of <dict>s containing field:value pairs. Field values correspond to a CSS3.0 schema wfmeas table fields. """ d = tr.data() time, endtime, samprate, nsamp = tr.getv("time", "endtime", "samprate", "nsamp") dt = 1.0 / samprate nsmps = int(params["twin"] * samprate) inds = [] for i in range(int(nsamp / nsmps)): istart = i * nsmps iend = istart + nsmps if iend > len(d): break m = cs.mean(d[istart:iend]) if abs(m) > params["thresh"]: inds.append((istart, iend)) if len(inds) == 0: return None inds = _flatten_index_tuples(inds) ret = [] for i in inds: ret.append( {"meastype": params["meastype"], "tmeas": time + dt * i[0], "twin": dt * (i[1] - i[0]), "auth": "auto_qc"} ) return ret
def mean(tr, params): """ Return DC offset of input trace. Arguments: tr - Trace4.1 schema trace object <class 'Dbptr'> params - Empty <dict> Return Values: <list> of <dict>s containing field:value pairs. Field values correspond to a CSS3.0 schema wfmeas table fields. """ d = tr.data() time, endtime, samprate, nsamp = tr.getv("time", "endtime", "samprate", "nsamp") dt = 1.0 / samprate nsmps = int(params["twin"] * samprate) inds = [] for i in range(int(nsamp / nsmps)): istart = i * nsmps iend = istart + nsmps if iend > len(d): break m = cs.mean(d[istart:iend]) if abs(m) > params["thresh"]: inds.append((istart, iend)) if len(inds) == 0: return None inds = _flatten_index_tuples(inds) ret = [] for i in inds: ret.append({ "meastype": params["meastype"], "tmeas": time + dt * i[0], "twin": dt * (i[1] - i[0]), "auth": "auto_qc", }) return ret