コード例 #1
0
import DCGAN
import numpy as np
from torch.autograd import Variable

# Hyper Parameters
EPOCH = 100  # 训练的epoch数
Z_DIMENSION = 110  # 生成器的idea数,最后十位为label
G_EPOCH = 1  # 判别器的epoch数
NUM_IMG = 100  # 图像的batch size
LR = 0.0003  # 学习率
OPTIMIZER = torch.optim.Adam  # 优化器
CRITERION = nn.BCELoss()  # 损失函数
NUM_OF_WORKERS = 10  # 线程数
N_IDEAS = 100  # 随机数,Z_DEMENSION比它多了tag的数量

D = DCGAN.Discriminator()
G = DCGAN.Generator(Z_DIMENSION, 1 * 56 * 56)  #
Training_Set, Testing_Set, Training_Loader, Testing_Loader = DCGAN.load_image(
    NUM_IMG, NUM_OF_WORKERS)
D = D.cuda()
G = G.cuda()
d_optimizer = OPTIMIZER(D.parameters(), lr=LR)
g_optimizer = OPTIMIZER(G.parameters(), lr=LR)

if __name__ == '__main__':
    for count, i in enumerate(range(EPOCH)):
        for (img, label) in Training_Loader:
            labels_one_hot = np.zeros((NUM_IMG, 10))
            labels_one_hot[np.arange(NUM_IMG), label.numpy()] = 1
            img = Variable(img).cuda()
            real_label = Variable(
コード例 #2
0
            continue
        img = os.path.join(path, fname)
        img_arr = mx.image.imread(img)
        img_arr = transform(img_arr)
        img_list.append(img_arr)
train_data = mx.io.NDArrayIter(data=nd.concatenate(img_list),
                               batch_size=batch_size)

# Initial Model
## loss
loss = gluon.loss.SigmoidBinaryCrossEntropyLoss()
## generator and discriminator
filename1 = './params/dcgan.netG.get'
filename2 = './params/dcgan.netD.get'
netG = dc.Generator()
netD = dc.Discriminator()
#netG.load_params(filename1, ctx = ctx)
#netD.load_params(filename2, ctx = ctx)
netG.initialize(mx.init.Normal(0.02), ctx=ctx)
netD.initialize(mx.init.Normal(0.02), ctx=ctx)
## trainer for the generator and the discriminator
trainerG = gluon.Trainer(netG.collect_params(), 'adam', {
    'learning_rate': lr,
    'beta1': beta1
})
trainerD = gluon.Trainer(netD.collect_params(), 'adam', {
    'learning_rate': lr,
    'beta1': beta1
})

# Training Loop