コード例 #1
0
def f(x, p, aim):
    '''x : variable de contrôle
    p : paramètre du réseau
    renvoie le temps de trajet total pour (x,p) calculé avec Aimsun'''

    Aimsun_simul(x, p, aim)

    TTT = data.getTotalTravelTime(file)
    return TTT
コード例 #2
0
for path_data_set in [path_train_set, path_cv_set, path_test_set]:

    print("On", path_data_set.split('_')[-1], 'set')

    data_set = h5py.File(path_data_set, 'r')
    pos_topleft_coord = np.array(data_set['positive_example'])
    neg_topleft_coord = np.array(data_set['negative_example'])
    raw_image = np.array(data_set['raw_image'])
    road_mask = np.array(data_set['road_mask'])
    data_set.close()

    if classifier.classifier_type == 'LR':

        data_extractor = Data_Extractor(raw_image,
                                        road_mask,
                                        size,
                                        pos_topleft_coord=pos_topleft_coord,
                                        neg_topleft_coord=neg_topleft_coord,
                                        normalization=norm)

    else:
        assert classifier.classifier_type == 'FCN'

        data_extractor = FCN_Data_Extractor(
            raw_image,
            road_mask,
            size,
            pos_topleft_coord=pos_topleft_coord,
            neg_topleft_coord=neg_topleft_coord,
            normalization=norm)
    gc.collect()
コード例 #3
0
train_neg_topleft_coord = np.array(train_set['negative_example'])
train_raw_image = np.array(train_set['raw_image'])
train_road_mask = np.array(train_set['road_mask'])
train_set.close()

# Load cross-validation set
CV_set = h5py.File(path_cv_set, 'r')
CV_pos_topleft_coord = np.array(CV_set['positive_example'])
CV_neg_topleft_coord = np.array(CV_set['negative_example'])
CV_raw_image = np.array(CV_set['raw_image'])
CV_road_mask = np.array(CV_set['road_mask'])
CV_set.close()

Train_Data = Data_Extractor(train_raw_image,
                            train_road_mask,
                            size,
                            pos_topleft_coord=train_pos_topleft_coord,
                            neg_topleft_coord=train_neg_topleft_coord,
                            normalization=norm)
# run garbage collector
gc.collect()

CV_Data = Data_Extractor(CV_raw_image,
                         CV_road_mask,
                         size,
                         pos_topleft_coord=CV_pos_topleft_coord,
                         neg_topleft_coord=CV_neg_topleft_coord,
                         normalization=norm)
# run garbage collector
gc.collect()

print("train data:")
コード例 #4
0
"""
    Main Setup file to run the whole process for s given source data 
   
"""
import os
import time
from sys import argv, path

path.append(
    "/home/ahmedr/Documents/Backend-Retailstreets/venv/lib/python3.6/site-packages"
)
import Data_Extractor
import Patterns_Recognition

input_file_path = ""
try:
    if len(argv[1]) > 0 and os.stat("data/source_file/" +
                                    str(argv[1])).st_size > 0:
        input_file_path = "data/source_file/" + str(argv[1])
except Exception:
    exit("file not found: " + str(argv[1]))
os.system("python3 Reset_files.py")
texted_file = Data_Extractor.main(input_file_path)
Patterns_Recognition.main(texted_file)
time.sleep(10)
os.system("python3 PotentialMatch_Cleanser.py")
time.sleep(5)
os.system("python3 Address_Validator.py")
time.sleep(5)
os.system("python3 Information_Fetcher.py")
コード例 #5
0
def Aimsun_q():
    '''renvoie le paramètre exogène q du queuing model
    sortie : array (p,(k,gamma)) taille N²,2*N'''

    q = data.getQueuingModelParameters(file2)
    return q
コード例 #6
0
def Aimsun_p():
    '''renvoie le paramètre exogène p d'Aimsun
    sortie : [id_CP, id_n, cyc. dur., avail. cyc. ratio, nb of phases, start index]'''

    p = data.getNetworkParameters(file2)[1]
    return p
コード例 #7
0
def Aimsun_M():
    '''renvoie le nombre de noeuds du réseau'''

    M = data.getNetworkParameters(file2)[0]
    return M
コード例 #8
0
def Aimsun_N():
    '''renvoie le nombre de files dans le métamodèle'''

    N = data.getLanesNumber(file2)
    return N