#Load the finished SOMz #A = load('SOMz_finished.npy') #finished_SOMz = A.item() #total_obs = len(sample_points) #Run the first method #Phi_tilde = Point estimate #psf = psf from all data points in the SOMz cell #Initial guess = uniform Nsample = len(Mean_test) L0,L1 = df.get_limits(Nsample, size, rank) initial_guess = ones(200)*.01 base_point_dist = [] base_pdf_dist = [] matias_point_dist =[] matias_pdf_dist =[] #bootstrap_point_dist = [] #bootstrap_pdf_dist = [] #pseudo_boot_dist=[] for obs_num in xrange(L0,L1): #obs_num = sample_points[j]
#Run the first method #Phi_tilde = Point estimate #psf = psf from all data points in the SOMz cell #Initial guess = uniform if rank ==0 :sample_points = rnd.sample(range(total_obs),900) if rank == 0: save('900_sampled_points.npy',sample_points) comm.Barrier() sample_points = load('900_sampled_points.npy') Nsample = len(sample_points) L0,L1 = df.get_limits(Nsample, size, rank) initial_guess = ones(200)*.01 final_z_dist = [] for jj in xrange(L0,L1): obs_num = sample_points[jj] indices = finished_SOMz.ivals[finished_SOMz.get_best(X[obs_num])] #Pull the relevant galaxies from the full data-set new_data = train_data_nocol.iloc[indices] new_data.reset_index(inplace=True) #Calculate the point spread function psf = df.point_spread_function(new_data,smoothed=False)