コード例 #1
0
ファイル: EDFfileCompleter.py プロジェクト: rentreg/edna
def edf_keywords_completion(edfin, keywords, edfout=None):
    """This procedure takes an EDF file and completes it with the keywords given as CIF dictionnary
    @param edfin: The name or the path of an EDF file to be read
    @type  edfin: Python String  
    @param keywords: dictionary containing the CIF-like data
    @type  keywords: Python dictionary
    @param edfout:  name or the path of an EDF file to be written. Caution, this WILL overwrite the file. If nothing is given, the name witll be edfin+keywords.edf
    @type  edfout: Python String  
    """
    if not edfout: edfout = os.path.splitext(edfin)[0] + "+keywords.edf"
    print "processing file %s --->%s " % (edfin, edfout)
    infile = EDF.EdfFile(edfin)
    data = infile.GetData(0)
    headers = infile.GetHeader(0)
    for key in keywords:
        if key.lower() == "loop_":
            #As loops are not possible in EDF headers, we replace them by a kind of list
            loops = keywords[key]
            for oneLoop in loops:
                oneLoopIdx = 0  #this is a index of the loop
                for oneLoopdict in oneLoop[1]:
                    oneLoopIdx += 1
                    for loopKey in oneLoop[0]:
                        headers["%s[%i]" %
                                (loopKey, oneLoopIdx)] = oneLoopdict[loopKey]
        else:
            headers[key] = keywords[key]
    outfile = EDF.EdfFile(edfout)
    outfile.WriteImage(headers, data)
コード例 #2
0
ファイル: miniged.py プロジェクト: albusdemens/astrarecon
	def getBGarray(self, bg_filename):
		if self.bg_path == '-' and bg_filename == '-':
			self.bg_combined = np.zeros((self.roi[3], self.roi[1]))

		else:
			bg_file_with_path = self.bg_path + '/' + self.bg_files[0]
			bg_class = EdfFile.EdfFile(bg_file_with_path)
			bg_img = bg_class.GetData(0).astype(np.int64)[
				self.roi[2]:self.roi[3], self.roi[0]:self.roi[1]]

			self.bg_combined = np.zeros(np.shape(bg_img))

			if self.rank == 0:
				print "Reading background files (ROI)..."

			for i in range(len(self.bg_files)):
				bg_file_with_path = self.bg_path + '/' + self.bg_files[i]
				bg_class = EdfFile.EdfFile(bg_file_with_path)
				self.bg_combined += bg_class.GetData(0).astype(np.int64)[
					self.roi[2]:self.roi[3], self.roi[0]:self.roi[1]]

			self.bg_combined /= len(self.bg_files)

			bg_img_full = bg_class.GetData(0).astype(np.int64)
			self.bg_combined_full = np.zeros(np.shape(bg_img_full))

			if self.rank == 0:
				print "Reading background files (Full)..."

			for i in range(len(self.bg_files)):
				bg_file_with_path = self.bg_path + '/' + self.bg_files[i]
				bg_class = EdfFile.EdfFile(bg_file_with_path)
				self.bg_combined_full += bg_class.GetData(0).astype(np.int64)

			self.bg_combined_full /= len(self.bg_files)
コード例 #3
0
    def testExecute(self):
        """
        """
        self.run()
        plugin = self.getPlugin()
        ################################################################################
        # Compare XSDataResults
        ################################################################################

        strExpectedOutput = self.readAndParseFile(
            self.getReferenceDataOutputFile())
        #        strObtainedOutput = self.readAndParseFile (self.m_edObtainedOutputDataFile)
        EDVerbose.DEBUG("Checking obtained result...")
        xsDataResultReference = XSDataResultBioSaxsMetadatav1_0.parseString(
            strExpectedOutput)
        xsDataResultObtained = plugin.getDataOutput()
        EDAssert.strAlmostEqual(xsDataResultReference.marshal(),
                                xsDataResultObtained.marshal(),
                                "XSDataResult output are the same",
                                _strExcluded="bioSaxs")

        ################################################################################
        # Compare dictionary:
        ################################################################################
        edfRef = EdfFile.EdfFile(
            xsDataResultObtained.getOutputImage().getPath().value)
        edfObt = EdfFile.EdfFile(
            os.path.join(self.getTestsDataImagesHome(), "bioSaxsMetadata.edf"))
        ########################################################################
        # DEPRECATED PLUGIN => DEPREFCATED TESTS
        ########################################################################
        #        headerRef = edfRef.GetHeader(0)
        #        headerObt = edfObt.GetHeader(0)
        #        keysRef = headerRef.keys()
        #        keysObt = headerObt.keys()
        #        keysRef.sort()
        #        keysObt.sort()
        #        for key in ["HeaderID", "Image", 'EDF_BinarySize', "EDF_DataBlockID", "EDF_HeaderSize", "filename", "RasterOrientation", "Center_1", "Center_2", "Code", "Comments", "Concentration",
        #                    "VersionNumber",'time_of_day', ]:
        #            if key in keysObt: keysObt.remove(key)
        #            if key in keysRef: keysRef.remove(key)
        #        EDAssert.equal(keysRef, keysObt, _strComment="Same keys in the header dictionary")
        #        for key in keysRef:
        #            EDAssert.strAlmostEqual(headerRef[key], headerObt[key], _strComment="header value %s are the same" % key, _strExcluded="bioSaxs")

        ################################################################################
        # Compare images
        ################################################################################

        outputData = edfObt.GetData(0)
        referenceData = edfRef.GetData(0)
        EDAssert.arraySimilar(outputData,
                              referenceData,
                              _fAbsMaxDelta=0.1,
                              _fScaledMaxDelta=0.05,
                              _strComment="Images-data are the same")
コード例 #4
0
    def getBGarray(self, bg_filename):
        if self.bg_path == '-' and bg_filename == '-':
            self.bg_combined = np.zeros((self.roi[3], self.roi[1]))

        else:
            bg_file_with_path = self.bg_path + '/' + self.bg_files[0]
            bg_class = EdfFile.EdfFile(bg_file_with_path)
            bg_img = bg_class.GetData(0).astype(
                np.int64)[self.roi[2]:self.roi[3], self.roi[0]:self.roi[1]]

            self.bg_combined = np.zeros(np.shape(bg_img))

            if self.rank == 0:
                print "Reading background files (ROI)..."

            for i in range(len(self.bg_files)):
                bg_file_with_path = self.bg_path + '/' + self.bg_files[i]
                bg_class = EdfFile.EdfFile(bg_file_with_path)
                self.bg_combined += bg_class.GetData(0).astype(
                    np.int64)[self.roi[2]:self.roi[3], self.roi[0]:self.roi[1]]

            self.bg_combined /= len(self.bg_files)

            bg_img_full = bg_class.GetData(0).astype(np.int64)
            self.bg_combined_full = np.zeros(np.shape(bg_img_full))

            if self.rank == 0:
                print "Reading background files (Full)..."

            for i in range(len(self.bg_files)):
                bg_file_with_path = self.bg_path + '/' + self.bg_files[i]
                bg_class = EdfFile.EdfFile(bg_file_with_path)
                self.bg_combined_full += bg_class.GetData(0).astype(np.int64)

            self.bg_combined_full /= len(self.bg_files)

            bckg = self.bg_combined
            bckg_entire = self.bg_combined_full

        # Check background images
        #fig = plt.figure()
        #a=fig.add_subplot(1,2,1)
        #plt.imshow(bckg)
        #a.set_title('Background ROI')
        #b=fig.add_subplot(1,2,2)
        #plt.imshow(bckg_entire)
        #b.set_title('All background')
        #plt.show()
        np.save('bckg_roi.npy', bckg)
        np.save('bckg_all.npy', bckg_entire)
コード例 #5
0
    def testExecute(self):
        """
        """
        self.run()
        plugin = self.getPlugin()

################################################################################
# Compare XSDataResults
################################################################################

        strExpectedOutput = self.readAndParseFile (self.getReferenceDataOutputFile())
#        strObtainedOutput = self.readAndParseFile (self.m_edObtainedOutputDataFile)
        EDVerbose.DEBUG("Checking obtained result...")
        xsDataResultReference = XSDataResultBioSaxsAveragev1_0.parseString(strExpectedOutput)
        xsDataResultObtained = plugin.getDataOutput()
        EDAssert.strAlmostEqual(xsDataResultReference.marshal(), xsDataResultObtained.marshal(), "XSDataResult output are the same", _strExcluded="bioSaxs")


################################################################################
# Compare spectrum ascii Files
################################################################################

        outputData = open(xsDataResultObtained.getAveragedCurve().getPath().value, "rb").read()
        referenceData = open(os.path.join(self.getTestsDataImagesHome(), "bioSaxsAveraged.dat"), "rb").read()

        EDAssert.strAlmostEqual(referenceData, outputData, _strComment="3-column ascii spectra files spectra are the same", _fRelError=0.1, _fAbsError=0.1, _strExcluded="bioSaxs")

################################################################################
# Compare images 
################################################################################
        edfObt = EdfFile.EdfFile(xsDataResultObtained.getAveragedImage().getPath().value)
        edfRef = EdfFile.EdfFile(os.path.join(self.getTestsDataImagesHome(), "bioSaxsAveraged.edf"))
        outputData = edfObt.GetData(0)
        referenceData = edfRef.GetData(0)
        EDAssert.arraySimilar(outputData, referenceData , _fAbsMaxDelta=0.1, _fScaledMaxDelta=0.05, _strComment="Averaged images are the same")

        headerRef = edfRef.GetHeader(0)
        headerObt = edfObt.GetHeader(0)
        keysRef = headerRef.keys()
        keysObt = headerObt.keys()
        keysRef.sort()
        keysObt.sort()
        for key in ["HeaderID", "Image", 'EDF_BinarySize', "EDF_DataBlockID", "EDF_HeaderSize", "filename", "RasterOrientation", "History-1", "History-1~1" ]:
            if key in keysObt: keysObt.remove(key)
            if key in keysRef: keysRef.remove(key)
        EDAssert.equal(keysRef, keysObt, _strComment="Same keys in the header dictionary for Corrected Images")
        for key in keysRef:
            EDAssert.strAlmostEqual(headerRef[key], headerObt[key], _strComment="header value in Averaged %s are the same" % key, _strExcluded="bioSaxs")
コード例 #6
0
ファイル: some_modules_new.py プロジェクト: zxmxyh/pyXPCS
def headeredf(filename, imgn=0):
    if isfile(filename):
        f = EdfFile.EdfFile(filename)
        return f.GetHeader(imgn)
    else:
        print "file ", filename, " does not exist!"
        return
コード例 #7
0
 def __saveEDF(self, fileSelected):
     if not fileSelected:
         return
     fileSelected = str(fileSelected)
     data = self._saveEDFPlug._data()
     edf_file = EdfFile.EdfFile(fileSelected)
     edf_file.WriteImage({}, data)
コード例 #8
0
ファイル: some_modules_new.py プロジェクト: zxmxyh/pyXPCS
def loadedf(filename, imgn=0):
    if isfile(filename):
        f = EdfFile.EdfFile(filename)
        return f.GetData(imgn)
    else:
        print "file ", filename, " does not exist!"
        return
コード例 #9
0
ファイル: ytrc.py プロジェクト: zxmxyh/pyXPCS
def read(filename):
    trcfile = EdfFile.EdfFile(filename)
    trcheader = trcfile.GetHeader(0)
    trcdata = asfarray(trcfile.GetData(0))
    trcdata = trcdata / 2**16 * (float(trcheader['MaxValue']) - float(
        trcheader['MinValue'])) + float(trcheader['MinValue'])
    return trcdata
コード例 #10
0
ファイル: ESRF.py プロジェクト: hwkobe/AreaDiffractionMachine
    def __init__(self, filename):

        try:
            f = EdfFile.EdfFile(filename)
        except:
            raise UserInputException("""Unable to read in the file \
%s because the Object EdfFile that I am using to read in edf data \
raised an error when trying to read in the file. This probably means \
that there is something wrong \
with the file that you are trying to open""" % filename)

        data = f.GetData(0)

        if not alltrue(alltrue(less_equal(data, 2147483647))):
            print """Warning, some of the data stored in the \
file %s has an intensity larger then 2^31-1 which is too big for this \
program to hold. Any of these large values were clipped to have a value 
of 2^31-1.""" % filename

        # clip any data that is too big
        mask1 = data <= 2147483647
        mask2 = data > 2147483647
        masked_data = data * mask1 + (pow(2, 31) - 1) * mask2
        masked_data = masked_data.astype(Numeric.Int32)

        self.size = max(masked_data.shape[0], masked_data.shape[1])

        # pad values if necessary - create an array to put everything in
        self.data = Numeric.zeros((self.size, self.size), Numeric.Int32)

        # copy the data into the padded array
        self.data[0:masked_data.shape[0], 0:masked_data.shape[1]] = masked_data
        self.data = Numeric.transpose(self.data)
コード例 #11
0
    def createAverageWfandDf(self):

        if not (os.path.exists(self.dirname + '/refHST0000.edf')):
            print('NO REF ')
            refBeg = glob.glob(self.dirname + '/ref*_0000.edf')
            print(refBeg)
            if len(refBeg) > 0:
                self.outputFileFFNameBeg = self.dirname + '/refForHST0000.edf'
                vBeg = Averager.Averager(refBeg,
                                         self.outputFileFFNameBeg,
                                         option=0)

            if (self.ref_on < self.numberOfProjections):
                cpt = self.ref_on
                while cpt < self.numberOfProjections:
                    textref = '%4.4d' % cpt
                    refBeg = glob.glob(self.dirname + '/ref*_' + textref +
                                       '.edf')

                    if len(refBeg > 0):
                        self.outputFileNameFFEnd = self.dirname + '/refForHST' + textref + '.edf'
                        vBeg = Averager.Averager(refBeg,
                                                 self.outputFileNameFFEnd,
                                                 option=1)
                    cpt += self.ref_on
            else:
                textref = '%4.4d' % self.ref_on
                refBeg = glob.glob(self.dirname + '/ref*_' + textref + '.edf')
                if len(refBeg) > 0:
                    self.outputFileNameFFEnd = self.dirname + '/refForHST' + textref + '.edf'
                    vBeg = Averager.Averager(refBeg,
                                             self.outputFileNameFFEnd,
                                             option=0)

            darkFile = self.dirname + '/darkend0000.edf'
            data = edf.EdfFile(darkFile).GetData(0)
            data = np.divide(data, self.numberOfDarkFields)
            self.darkOutputFile = self.dirname + '/darkForHST0000.edf'

            filetoWrite = edf.EdfFile(self.darkOutputFile, access='wb+')
            filetoWrite.WriteImage({}, data, Append=0, DataType='FloatValue')
        else:
            self.outputFileFFNameBeg = self.dirname + '/refHST0000.edf'
            self.outputFileNameFFEnd = self.dirname + '/refHST0000.edf'
            self.darkOutputFile = self.dirname + '/dark.edf'

        self.averageDone = True
コード例 #12
0
 def save3DImage(self, outputName):
     self.nbSlices, self.width, self.height = self.data.shape
     for k in range(self.nbSlices):
         textNumSlice = '%4.4d' % k
         finalOutputName = outputName + textNumSlice + '.edf'
         filetoWrite = edf.EdfFile(finalOutputName, access='wb+')
         dataToStore = self.data[k, :, :].squeeze()
         filetoWrite.WriteImage({}, dataToStore)
コード例 #13
0
    def saveSino(self, outputName):

        for i in range(self.width):
            textNumSlice = '%4.4d' % i
            finalOutputName = outputName + textNumSlice + '.edf'
            filetoWrite = edf.EdfFile(finalOutputName, access='wb+')
            dataToStore = self.data[:, i, :].squeeze()
            filetoWrite.WriteImage({}, dataToStore)
コード例 #14
0
    def createAverageWfandDfPbm(self):
        refBeg = glob.glob(self.dirname + '/RefA*.edf')
        print(refBeg)
        if len(refBeg) > 0:
            self.outputFileFFNameBeg = self.dirname + '/refForHST0000.edf'
            vBeg = Averager.Averager(refBeg,
                                     self.outputFileFFNameBeg,
                                     option=0)

        ref = edf.EdfFile(refBeg[0], access='r')
        ref = ref.GetData(0)

        self.darkOutputFile = self.dirname + '/darkForHST0000.edf'
        data = np.ones(ref.shape)
        filetoWrite = edf.EdfFile(self.darkOutputFile, access='wb+')
        filetoWrite.WriteImage({}, data, Append=0, DataType='FloatValue')

        self.averageDone = True
コード例 #15
0
ファイル: some_modules_new.py プロジェクト: zxmxyh/pyXPCS
def saveedf(filename, data, imgn=0):
    try:
        newf = EdfFile.EdfFile(filename)
        newf.WriteImage({}, data, imgn)
        print "file is saved to ", filename
        return
    except:
        print "file is not saved!"
        return
コード例 #16
0
ファイル: spytIO.py プロジェクト: Dralehcab/Speckle
def makeDarkMean(Darkfiedls):


    nbslices, height, width = Darkfiedls.shape
    meanSlice = np.mean(Darkfiedls, axis=0)
    print ('-----------------------  mean Dark calculation done ------------------------- ')
    OutputFileName = '/Users/helene/PycharmProjects/spytlab/meanDarkTest.edf'
    outputEdf = edf.EdfFile(OutputFileName, access='wb+')
    outputEdf.WriteImage({}, meanSlice)
    return meanSlice
コード例 #17
0
ファイル: PeMaIO.py プロジェクト: DoctorEmmetBrown/Pagaille
def readImage(filename):
    if filename.endswith('.edf') or filename.endswith('.tiff') :
        edfFile = edf.EdfFile(filename, access='rb')
        im2D = edfFile.GetData(0)

    if filename.endswith('.tiff') or filename.endswith('.tif') or filename.endswith('.png') or  filename.endswith('.TIF')  or filename.endswith('.TIFF') :
        img=Image.open(filename)
        im2D= np.array(img)

    return im2D
コード例 #18
0
def openImage(filename):
    filename = str(filename)
    if filename.endswith('.edf'):
        im = edf.EdfFile(filename, access='rb')
        imarray = im.GetData(0)
    else:
        imarray = Image.open(filename)
        imarray = np.array(imarray)

    return imarray
コード例 #19
0
def read_edf_slices( imageDimensions, base_dir, edf_base_name, digits, extension, slices_range, crop=None ):
    """
    This reads EDF slices, and returns a 3D volume

    INPUT:
    - image_size          size of  RAW files.
    - base_dir            the directory inside which the raw files are.
    - edf_base_name       the "base" name of the raw files
    - digits              pre-padding with zeros in file number
    - extension           extension of raw files
    - slices_range        tuple or list of number of slices to read
    - crop                list of lists: [ [ x_min, x_max ], [ y_min, y_max ] ]
    """    

    import numpy
    import EdfFile
    
    # ET: there should be a +1 here because if I wanto to load slices from 1 to 5 this give 5 slices and not 4 
    numberOfSlices = slices_range[1] - slices_range[0] + 1
        
    # Define array for image loading
    if crop == None:
        # If we don't have a crop, we're going to use the whole slice size.
        outputVolume = numpy.ones( ( numberOfSlices, imageDimensions[1], imageDimensions[0] ), dtype='<f4' ) * numpy.nan
    else:
        # Slice dimensions from crop
        outputVolume = numpy.ones( ( numberOfSlices, crop[1][1] - crop[1][0], crop[0][1] - crop[0][0] ), dtype='<f4' ) * numpy.nan

    # Load all images into big array
    for sliceNumber in range( numberOfSlices ):

        try:
            # 2016-04-30 ET: if worrking in 2D digits == 0 and the name in constructed differently
            if digits ==0:
              filename = "%s/%s%s"%( base_dir, edf_base_name, extension )
            else:
              filename = "%s/%s%0*i%s"%( base_dir, edf_base_name, digits, sliceNumber + slices_range[0], extension )
            currentImage = numpy.array( EdfFile.EdfFile( filename ).GetData( 0 ) )

            if crop == None:
                outputVolume[ sliceNumber ] = currentImage
            else:
                outputVolume[ sliceNumber ] = currentImage[ crop[1][0]:crop[1][1], crop[0][0]:crop[0][1] ]
                
        except :
            try: logging.log.warning( "read_edf_slices(): File %s not found "%filename )
            except: print "read_edf_slices(): File %s not found "%filename 
            pass
          
    try: logging.log.debug( "read_edf_pil_slices(): Volume mean value = %s"%( outputVolume.mean() ) )
    except: print "read_edf_pil_slices(): Volume mean value = %s"%( outputVolume.mean() ) 

    return outputVolume
コード例 #20
0
ファイル: ytrc.py プロジェクト: zxmxyh/pyXPCS
def write(filename, trcdata):
    trcfile = EdfFile.EdfFile(filename)
    maxtrc = trcdata.max()
    mintrc = trcdata.min()
    trcdata = (trcdata - mintrc) / (maxtrc - mintrc) * 2**16
    trcfile.WriteImage({
        'MaxValue': maxtrc,
        'MinValue': mintrc
    },
                       trcdata,
                       0,
                       DataType='UnsignedShort')
コード例 #21
0
    def edf(self):
        """
        Read data from a edf file.

        Returns
        -------
        ndarray
            Data.
        """
        f = EdfFile.EdfFile(self.fname, access='r')
        d = f.GetStaticHeader(0)
        arr = np.empty((f.NumImages, int(d['Dim_2']), int(d['Dim_1'])))
        for (i, ar) in enumerate(arr):
            arr[i::] = f.GetData(i)
        arr = self._slice_array(arr)
        return arr
コード例 #22
0
ファイル: miniged.py プロジェクト: albusdemens/astrarecon
	def getImage(self, index, full):
		file_with_path = self.path + '/' + self.data_files[index]

		img = EdfFile.EdfFile(file_with_path)
		roi = self.roi

		if full:
			im = img.GetData(0).astype(np.int64) - self.bg_combined_full
		else:
			im = img.GetData(0).astype(np.int64)[
				roi[2]:roi[3],
				roi[0]:roi[1]] - self.bg_combined

		im = self.cleanImage(im)

		return im
コード例 #23
0
def prepareFromFile(file_path, annotations):
    edf_file = EdfFile.EdfFile(file_path, annotations)
    epochs = edf_file.signals_list[1].getEpochs()
    outputMatrix = edf_file.createOutput(epochs)

    for e, o in zip(epochs, outputMatrix):
        if max(o) == 0:
            epochs.remove(e)
            outputMatrix.remove(o)

    inputMatrix = edf_file.createInput(epochs, True)

    if (len(inputMatrix) != len(outputMatrix)):
        print("shapes dont match in file %s. input: %d, output: %d" %
              (file_path, len(inputMatrix), len(outputMatrix)))
        return np.array([]), np.array([])

    return inputMatrix, np.array(outputMatrix)
コード例 #24
0
ファイル: PeMaIO.py プロジェクト: DoctorEmmetBrown/Pagaille
def writeImage(filename, data):
    if filename.endswith('.edf') or filename.endswith('.tiff') :
        edfFile = edf.EdfFile(filename, access='wb-')
        edfFile.WriteImage({}, data)

    else:
        typeImage=data.dtype
        if typeImage==np.uint8 :
            scipy.misc.imsave(filename, data)

        if typeImage==np.bool :
            toStore=np.zeros(data.shape,dtype=np.uint8)
            toStore[data==True]=255
            scipy.misc.imsave(filename, toStore)

        if typeImage==np.float32 or typeImage==np.float16 or typeImage==np.float64 :
            scipy.misc.imsave(filename, data)

    return im2D
コード例 #25
0
ファイル: Utils.py プロジェクト: soleil-ica/Lima-tango
def getDatasFromFile(filepath, fromIndex=0, toIndex=-1):
    returnDatas = []
    try:
        f = EdfFile.EdfFile(filepath)
        if toIndex < 0:
            toIndex = f.GetNumImages()
        for i in range(fromIndex, toIndex):
            a = f.GetData(i)
            header = f.GetHeader(i)
            rData = Core.Processlib.Data()
            rData.buffer = a
            try:
                rData.header = header
            except TypeError:
                pass
            returnDatas.append(rData)
    except:
        import traceback
        traceback.print_exc()
    finally:
        return returnDatas
コード例 #26
0
    def getHeader(self, filenumber):
        file_with_path = self.path + '/' + self.data_files[filenumber]
        img = EdfFile.EdfFile(file_with_path)
        header = img.GetHeader(0)

        mot_array = header['motor_mne'].split(' ')
        motpos_array = header['motor_pos'].split(' ')

        try:
            det_array = header['counter_mne'].split(' ')
            detpos_array = header['counter_pos'].split(' ')
        except KeyError:
            det_array = []
            detpos_array = []

        try:
            srcur = float(header['machine current'].split(' ')[0])
        except KeyError:
            srcur = 0

        return mot_array, motpos_array, det_array, detpos_array, srcur
コード例 #27
0
    def getFullHeader(self, filenumber):
        file_with_path = self.path + '/' + self.data_files[filenumber]
        img = EdfFile.EdfFile(file_with_path)
        header = img.GetHeader(0)

        metalist = []

        for ind in header.keys():
            if ind != 'motor_pos'\
             and ind != 'motor_mne'\
             and ind != 'counter_pos'\
             and ind != 'counter_mne':

                metalist.append(header[ind])

        try:
            metalist.extend(header['motor_pos'].split(' '))
            metalist.extend(header['counter_pos'].split(' '))
        except KeyError:
            pass

        return metalist
コード例 #28
0
    def getIndexList(self):
        file_with_path = self.path + '/' + self.data_files[0]
        img = EdfFile.EdfFile(file_with_path)
        header = img.GetHeader(0)

        indexlist = []

        for ind in header.keys():
            if ind != 'motor_pos'\
             and ind != 'motor_mne'\
             and ind != 'counter_pos'\
             and ind != 'counter_mne':

                indexlist.append(ind)

        try:
            indexlist.extend(header['motor_mne'].split(' '))
            indexlist.extend(header['counter_mne'].split(' '))
        except KeyError:
            pass

        self.indexlist = indexlist
コード例 #29
0
ファイル: some_modules_new.py プロジェクト: zxmxyh/pyXPCS
def Iq(input_file, avg):
    info = get_input(input_file)
    qtot = qpattern(info)
    geometry = info['geometry']
    if geometry == 'gisaxs':
        qtot = qtot[1]
    wavelength = float(info['wavelength'])
    distance = float(info['detector sample distance'])
    detector = info['detector']
    if detector == 'princeton' or detector == 'andor 22.5micron':
        pix_size = 0.0225
    if detector == 'medipix':
        pix_size = 0.055
    if detector == 'andor 13micron' or detector == 'andor':
        pix_size = 0.013
    if detector == 'xbpm':
        pix_size = 0.001
    deltaq = 4 * pi / wavelength * sin(arctan(2 * pix_size / distance) / 2)
    mask_file = info['mask file']
    tot = EdfFile.EdfFile(mask_file)
    totmask = tot.GetData(0) + tot.GetData(1)

    q = qtot[totmask == 0]
    indq = argsort(q)
    q = q[indq]
    qr = arange(min(q), max(q) + deltaq, deltaq)
    m = avg[totmask == 0]
    m = m[indq]
    lqv = len(qr)

    radi = zeros((lqv, 2))
    ini = 0
    hh, bins = histogram(q, lqv, new=True)
    radi[:, 0] = bins[:-1] + deltaq / 2
    for i in xrange(lqv):
        radi[i, 1] = mean(m[ini:ini + hh[i]])
        ini = ini + hh[i]
    return radi
コード例 #30
0
        def _get_from_file(self, image_nb):
            for ref_data in self.ref_data:
                values = self._get_filenames(ref_data, image_nb)
                filename, path_in_file, image_index, file_format = values[0]

                if file_format in ('EDF', 'EDFGZ', 'EDFConcat'):
                    if file_format == 'EDFConcat':
                        image_index = 0
                    if EdfFile is not None:
                        f = EdfFile.EdfFile(filename)
                        return f.GetData(image_index)
                    else:
                        raise RuntimeError("EdfFile module is not available, "
                                           "cannot return image data.")
                elif file_format == 'HDF5':
                    if h5py is not None:
                        with h5py.File(filename) as f:
                            dataset = f[path_in_file]
                            return dataset[image_index]
                else:
                    raise RuntimeError("Format net yet managed")
            else:
                raise RuntimeError("Can't retrieved image %d from file" %
                                   image_nb)