def test_main(filename_s, filename_e, filename_a): wordlist_s = TextPreprocess.Tokens(filename_s) wordlist_e = TextPreprocess.Tokens(filename_e) dict_s = Process.DictBiulder(wordlist_s) dict_e = Process.DictBiulder(wordlist_e) Fin_dict = Process.MergeDict(dict_s, dict_e) V1 = Features.GetVector(dict_s, Fin_dict) V2 = Features.GetVector(dict_e, Fin_dict) ans = Similarity.CosineSimilarity(V1, V2) with open(filename_a, 'w') as f_obj: temp = str(ans) contents = '' for i in range(0, 4): contents = contents + temp[i] f_obj.write(contents) print(contents)
import TextPreprocess import Process import Features import Similarity import sys wordlist_s = TextPreprocess.Tokens(sys.argv[1]) wordlist_e = TextPreprocess.Tokens(sys.argv[2]) dict_s = Process.DictBiulder(wordlist_s) dict_e = Process.DictBiulder(wordlist_e) Fin_dict = Process.MergeDict(dict_s, dict_e) V1 = Features.GetVector(dict_s, Fin_dict) V2 = Features.GetVector(dict_e, Fin_dict) ans = Similarity.CosineSimilarity(V1, V2) with open(sys.argv[3], 'w') as f_obj: if ans == 0: f_obj.write("0.00") else: temp = str(ans) contents = '' for i in range(0, 4): contents = contents + temp[i] f_obj.write(contents)