def map_wordnet_EVD(): print "loading EVD" dict_EVD = EVDParser.readEVDFile() print "loading WN" dict_wn = WordnetProcessForEVD.read_nouns() for key, values in dict_wn.items(): key_lemmas = key.split("=")[1] key_lemmas = key_lemmas.split("-") key = key.split("=")[0] key_definition = key.split("-")[1] key = key.split("-")[0] test_flag = 0 for lemma in key_lemmas: if lemma[:1] == "b" : test_flag = 1 if test_flag == 0: continue print "map_wordnet_EVD " + key vi_means = get_EVD_means(key, key_lemmas, values, dict_EVD) ox_means = get_Ox_means(key, key_lemmas) means = get_best_mean(vi_means, ox_means, 2) ################################################################################ # get greatest duplicated mean # if len(values) == 1: # means = vi_means # item_count = [(item,count) for item, count in collections.Counter(vi_means).items() if count > 1] # if len(item_count) > 0: # means = [max(item_count,key = itemgetter(1))[0]] # # items_2 = [item for item, count in collections.Counter(vi_means).items() if count > 2] # for item in items_2: # means.append(item) # means = list(set(means)) # # else: # item_count = [(item,count) for item, count in collections.Counter(vi_means).items() if count > 1] # if len(item_count) == 0: # continue # means = [max(item_count,key = itemgetter(1))[0]] # # items_2 = [item for item, count in collections.Counter(vi_means).items() if count > 2] # for item in items_2: # means.append(item) # means = list(set(means)) ################################################################################ if len(means) > 0: means = [means[0]] means.insert(0,key + "-" + key_definition) filename = "Results/EVD/wn_evd_b_0_1.csv" FileProcess.append_result_to_excel_file(filename, means)
def append_params_and_result_to_file(values): FileProcess.append_result_to_excel_file(result_file_name,values)