def optimize(w, params, spl_params): assert(spl_params.spl_mode == 0) init_latent_variables(w, params) for iter in range(params.max_outer_iter): print "SSVM" w = SPLInnerLoop.optimize(w, params, spl_params) #if spl_params.spl_mode == 0 then this just calls SSVM.optimize() print "imputing h" HImputation.impute(w, params, spl_params) #this may interact with SPL at some point if has_converged(w, params, spl_params): break
def optimize(w, globalSPLVars, params): bestObj = numpy.inf wBest= CommonApp.PsiObject(params,False) initLatentVariables(w, params) utils.dumpCurrentLatentVariables(params, "%s.%s"%(params.latentVariableFile, 'init')) iter = 0 while True: logging.debug("SSVM iteration %d" % (iter)) w,optState = SPLInnerLoop.optimize(w, globalSPLVars, params, iter) (converged, bestObj, wBest,newObj) = checkConvergence(w, globalSPLVars, params, bestObj, w,iter) logging.debug("Objective after optimizing w: %f" % newObj) lastedLongEnough= (iter > params.minOuterIters) and ((params.splParams.splMode=='CCCP' ) or (params.splParams.splMode!='CCCP' and iter > params.splParams.splInitIters and globalSPLVars.fraction >= 1.0)) logging.debug("Breaking because of convergence") if (converged and lastedLongEnough): logging.debug("Breaking because of convergence") break elif iter>params.maxOuterIters: logging.debug("Breaking because its been 10 iterations") break elif params.supervised: logging.debug("Only one run because we are in supervised mode") break HImputation.impute(optState, params) (converged, bestObj, wBest,newObj) = checkConvergence(w, globalSPLVars, params, bestObj, w,iter) logging.debug("Objective after updating latents: %f" % newObj) logging.debug("Objective (best so far) %f" % bestObj) CacheObj.cacheObject(params.modelFile + "."+str(iter), w) utils.dumpCurrentLatentVariables(params, "%s.%d"%(params.latentVariableFile, iter)) iter += 1 utils.dumpCurrentLatentVariables(params, params.latentVariableFile) logging.debug("Best objective attained is %f" % bestObj) return wBest
def initLatentVariables(w, params): if params.initialModelFile: HImputation.impute(w, params)