コード例 #1
0
ファイル: Recon.py プロジェクト: davidsoncolin/IMS
def solve_x3ds_normals(x2ds, splits, labels, Ps, rays, robust=True):
    x3ds, x3ds_labels, E, x2ds_labels = ISCV.solve_x3ds(
        x2ds, splits, labels, Ps, robust)

    x3ds_normals = np.ones_like(x3ds)
    for xi, label in enumerate(x3ds_labels):
        rayIndices = np.where(labels == label)[0]
        x3ds_normals[xi] = np.sum(rays[rayIndices], axis=0)

    # Normalise the ray directions
    x3ds_normals /= (np.sum(x3ds_normals * x3ds_normals,
                            axis=1)**0.5).reshape(-1, 1)

    return x3ds, x3ds_labels, x3ds_normals, E, x2ds_labels
コード例 #2
0
ファイル: Recon.py プロジェクト: davidsoncolin/IMS
def solve_x3ds(x2ds, splits, labels, Ps, robust=True):
    """
	Given some labelled 2d points, generate labelled 3d positions for every multiply-labelled point and equations for
	every single-labelled point.
	
	Args:
		x2ds (float[][2]): 2D Detections.
		splits (int[]): Indices of ranges of 2Ds per camera.
		labels (int[]: Labels of x2ds.
		Ps (?): Projection matrices of the cameras?
		robust (bool): Robustness Flag (requires more Rays to reconstruct). Default = True

	Returns:
		float[][3]: "x3ds" - the resulting 3D reconstructions.
		int[]: "x3d_labels" - the labels for the 3D points.
		??: "E[singles]" - Equations describing 2D detections not born of the 3D yet.
		int[] "singles_labels" - labels for the 2D contributions.
		
	Requires:
		ISCV.solve_x3ds
	"""
    return ISCV.solve_x3ds(
        x2ds, splits, labels, Ps,
        robust)  # x3ds, x3d_labels, E[single_rays], single_ray_labels