コード例 #1
0
def iteration_standalone_mqr(query_frame):
    r_quads_tree = g.r_quadsTree
    r_harlocs = g.r_harlocs
    q_harlocs = g.q_harlocs
    md_threshold = g.md_threshold
    st_threshold = g.st_threshold
    all_ori = g.all_ori
    all_id = g.all_id
    all_max = g.all_max
    all_cen = g.all_cen
    nos = g.nos
    scale_index = g.scale_index
    crop_flag = g.crop_flag
    sequence = g.sequence
    rd_start = g.rd_start
    rd_end = g.rd_end
    maxdis = g.maxdis
    maxori = g.maxori
    tolers = g.tolers

    """
    We make pp reference the desired multiharloc list for the query video
        frame query_frame
    """
    pp = q_harlocs[query_frame]

    """
    Alex: for the query frame query_frame we retrieve, for scale scale_index, the
        harris features in var points.
      Then we build the quads from points.
      Then for each quad (4 float values) we query the corresponding scale
        kd-tree, and we get the indices.
        Then we build the histogram and compute idf, ....!!!!

     Note: scale is 1 for original frame resolution and the higher
        we go we have lower image resolutions (we go higher in the
        Guassian pyramid I think).
    """
    points = pp[pp[:, 2] == scale_index, 0:2]
    qout, qcen, qmaxdis, qori = findquads.findquads(points, md_threshold, 0)

    common.DebugPrint("multiscale_quad_retrieval(): query_frame = %d, "
                      "qout.shape = %s" % (query_frame, str(qout.shape)))

    space_xy = np.zeros((qcen.shape[0], 2 * len(r_harlocs))) + np.nan
    votes = np.zeros((len(r_harlocs), 1))
    assert isinstance(tolers, float)

    """
    We substitute queryFrameQuad - 1 with queryFrameQuad, since we want
        to number arrays from 0 (not from 1 like in Matlab).
    """
    for queryFrameQuad in range(qout.shape[0]):
        """
        Matlab's polymorphism is really bugging here: although it's
            normally a float, tolers is considered to be a size 1 vector...
            so len(tolers) == 1
        """
        """
        We substitute tol_i - 1 with tol, since we want
            to number arrays from 0 (not from 1 like in Matlab).
        """
        for tol_i in range(1):
            tol = tolers

            # default for first PAMI with tol= 0.1 approximately

            # NOTE: SciPy's KDTree finds a few more results, in some cases,
            #    than the Matlab code from Evangelidis.
            # tol is a scalar representing the radius of the ball
            if config.KDTREE_IMPLEMENTATION == 0:
                idx = r_quads_tree.query_ball_point(qout[queryFrameQuad, :],
                                                    tol)
            elif config.KDTREE_IMPLEMENTATION == 1:
                pt = qout[queryFrameQuad, :]
                pt = np.array([[pt[0], pt[1], pt[2], pt[3]]], dtype=np.float32)
                retval, idx, dists = r_quads_tree.radiusSearch(
                    query=pt,
                    radius=(tol ** 2),
                    maxResults=NUM_MAX_ELEMS,
                    params=search_params)
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint(
                        "multiscale_quad_retrieval(): radiusSearch's retval "
                        "(at query_frame=%d, queryFrameQuad=%d) is %d\n" % (
                         query_frame, queryFrameQuad, retval))
                idx = idx[0]
                dists = dists[0]
                idx = idx[: retval]
                dists = dists[: retval]

            if common.MY_DEBUG_STDOUT:
                print("multiscale_quad_retrieval(): "
                      "qout[queryFrameQuad, :] = %s" % str(
                       qout[queryFrameQuad, :]))
                print("multiscale_quad_retrieval(): "
                      "idx = %s" % str(idx))
                print("multiscale_quad_retrieval(): "
                      "tol = %s" % str(tol))
                if config.KDTREE_IMPLEMENTATION == 0:
                    print("multiscale_quad_retrieval(): "
                          "r_quads_tree.data[idx] = %s" %
                          str(r_quads_tree.data[idx]))

            # We print the distances to the points returned in idx
            a = qout[queryFrameQuad, :]
            idx = np.array(idx)

            if common.MY_DEBUG_STDOUT:
                common.DebugPrint("multiscale_quad_retrieval(): "
                                  "all_max.shape = %s" % str(all_max.shape))
                common.DebugPrint("multiscale_quad_retrieval(): "
                                  "qmaxdis.shape = %s" % str(qmaxdis.shape))
                common.DebugPrint("multiscale_quad_retrieval(): "
                                  "qmaxdis = %s" % str(qmaxdis))
                common.DebugPrint("multiscale_quad_retrieval(): "
                                  "qori.shape = %s" % str(qori.shape))
                common.DebugPrint("multiscale_quad_retrieval(): "
                                  "qori = %s" % str(qori))

            if len(idx) == 0:
                # NOT A GOOD IDEA: continue
                # idx = np.array([])
                dis_idx = np.array([])
                ori_idx = np.array([])
            else:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "queryFrameQuad = %s" % str(
                                       queryFrameQuad))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "all_max[idx] = %s" % str(all_max[idx]))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "qmaxdis[queryFrameQuad] = %s" % str(
                                       qmaxdis[queryFrameQuad]))

                dis_idx = np.abs(
                    qmaxdis[queryFrameQuad] - all_max[idx]) < maxdis

                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "dis_idx = %s" % str(dis_idx))

                idx = idx[dis_idx]

                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "idx (after idx = idx[dis_idx]) = "
                                      "%s" % str(idx))

                ori_idx = np.abs(qori[queryFrameQuad] - all_ori[idx]) < maxori

                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "ori_idx = %s" % str(ori_idx))

                idx = idx[ori_idx]

            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # spatio-temporal consistency
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################

            if idx.size > 0:
                # Normally crop_flag == 0
                if crop_flag == 0:
                    dy = qcen[queryFrameQuad, 0] - all_cen[idx, 0]
                    dx = qcen[queryFrameQuad, 1] - all_cen[idx, 1]
                    D = dy ** 2 + dx ** 2
                    co_idx = D < pow(st_threshold, 2)
                    idx = idx[co_idx]
                else:
                    """
                    We substitute iii - 1 with iii, since we want
                        to number arrays from 0 (not from 1 like in Matlab).
                    """
                    for iii in range(len(idx)):
                        space_xy[queryFrameQuad,
                        (all_id[idx[iii]] - rd_start) * 2: (all_id[idx[
                            iii] - 1] - rd_start) * 2 + 1] = \
                            all_cen[idx[iii], :]

                # It has to be an np.array because we multiply it with a scalar
                histo_range = np.array(range(rd_start, rd_end + 1))
                hh = Matlab.hist(x=all_id[idx], binCenters=histo_range)

                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "hh = %s" % (str(hh)))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "hh.shape = %s" % (str(hh.shape)))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "all_id.shape = %s" % (str(all_id.shape)))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "idx = %s" % (str(idx)))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "idx.shape = %s" % (str(idx.shape)))

                # nz can be computed more optimally
                # nz=find(hh~=0) # nz can be computed more optimally
                # np.nonzero() always returns a tuple, even if it contains
                # 1 element since hh has only 1 dimension
                nz = np.nonzero(hh != 0)[0]
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "nz = %s" % (str(nz)))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "nz.shape = %s" % (str(nz.shape)))

                if nz.size > 0:
                    my_val = pow(math.log10(float(len(r_harlocs)) / len(nz)), 2)

                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "len(r_harlocs) = "
                                          "%d" % len(r_harlocs))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "len(nz) = %d" % len(nz))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "my_val = %.5f" % my_val)

                    # PREVIOUSLY
                    votes[nz, tol_i] = votes[nz, tol_i] + my_val

    if common.MY_DEBUG_STDOUT:
        common.DebugPrint("multiscale_quad_retrieval(): "
                          "votes.shape = %s" % (str(votes.shape)))
        common.DebugPrint("multiscale_quad_retrieval(): "
                          "votes = %s" % (str(votes)))

    return query_frame, np.ravel(votes)
コード例 #2
0
def multiscale_quad_retrieval(r_quads_tree, r_harlocs, q_harlocs, md_threshold,
                              st_threshold, all_ori, all_id, all_max, all_cen,
                              nos, scale_index, crop_flag, sequence):
    common.DebugPrint("Entered multiscale_quad_retrieval(): "
                      "md_threshold = %s, st_threshold = %s." %
                      (str(md_threshold), str(st_threshold)))

    assert len(r_harlocs) != 0
    assert len(q_harlocs) != 0

    try:
        votes_space = np.load("votes_space%d.npz" % scale_index)['arr_0']
        HH = np.load("HH%d.npz" % scale_index)['arr_0']
        return votes_space, HH
    except:
        common.DebugPrintErrorTrace()

    if common.MY_DEBUG_STDOUT:
        common.DebugPrint("multiscale_quad_retrieval(): r_quads_tree = %s" %
                          str(r_quads_tree))
        common.DebugPrint(
            "multiscale_quad_retrieval(): len(r_harlocs) = %d" % len(r_harlocs))
        common.DebugPrint(
            "multiscale_quad_retrieval(): r_harlocs = %s" % str(r_harlocs))
        common.DebugPrint(
            "multiscale_quad_retrieval(): q_harlocs = %s" % str(q_harlocs))
        common.DebugPrint(
            "multiscale_quad_retrieval(): md_threshold = %s" % str(
                md_threshold))
        print("multiscale_quad_retrieval(): st_threshold = %s" % str(
            st_threshold))
        common.DebugPrint(
            "multiscale_quad_retrieval(): all_id = %s" % str(all_id))
        common.DebugPrint("multiscale_quad_retrieval(): all_id.shape = %s" % (
            str(all_id.shape)))
        common.DebugPrint(
            "multiscale_quad_retrieval(): sequence = %s" % str(sequence))
        print("multiscale_quad_retrieval(): crop_flag = %s" % str(crop_flag))

    t1 = float(cv2.getTickCount())

    if scale_index > nos:
        assert scale_index <= nos

    # TODO: take out rd_start
    rd_start = 0
    rd_end = len(r_harlocs) - 1

    j = 1

    """
    Inspired from
      https://stackoverflow.com/questions/17559140/matlab-twice-as-fast-as-numpy
        BUT doesn't help in this case:
    votes_space = np.asfortranarray(np.zeros( (len(RD), len(QD)) ))
    """
    votes_space = np.zeros((len(r_harlocs), len(q_harlocs)))

    # Make a distinct copy of HH from votes_space...
    # TODO: use MAYBE even np.bool - OR take it out
    HH = np.zeros((len(r_harlocs), len(q_harlocs)), dtype=np.int8)

    # it helps to make more strict the threshold as the scale goes up
    tolers = 0.1 - float(scale_index) / 100.0

    maxdis = 3 + scale_index
    maxori = 0.25

    # TODO: I am using multiprocessing.Poll and return votes the dispatcher
    #  assembles the results, but the results are NOT the same with the serial
    #  case - although they look pretty decent, but they seem to be
    #  suboptimal - dp_alex returns suboptimal cost path for
    #  USE_MULTITHREADING == True instead of False.
    #         (Note: running under the same preconditions
    #             multiscale_quad_retrieval I got the same results in dp_alex().
    """
    if False: #config.USE_MULTITHREADING == True:
        global g
        g.r_quads_tree = r_quads_tree
        g.r_harlocs = r_harlocs
        g.q_harlocs = q_harlocs
        g.md_threshold = md_threshold
        g.st_threshold = st_threshold
        g.all_ori = all_ori
        g.all_id = all_id
        g.all_max = all_max
        g.all_cen = all_cen
        g.nos = nos
        g.scale_index = scale_index
        g.crop_flag = crop_flag
        g.sequence = sequence
        g.RD_start = RD_start
        g.RD_end = RD_end
        g.maxdis = maxdis
        g.maxori = maxori
        g.tolers = tolers

        #Start worker processes to use on multi-core processor (able to run
        #   in parallel - no GIL issue if each core has it's own VM)
    
        pool = multiprocessing.Pool(processes=config.numProcesses)
        print("multiscale_quad_retrieval(): Spawned a pool of %d workers" %
                                config.numProcesses)

        listParams = range(0, len(q_harlocs)) #!!!!TODO: use counterStep, config.initFrame[indexVideo]

        #res = pool.map(iteration_standalone_mqr, listParams)
        # See https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
        res = pool.map(func=iteration_standalone_mqr, iterable=listParams,
                       chunksize=1)

        print("Pool.map returns %s" % str(res)) #x0.size + 1

        # From https://medium.com/building-things-on-the-internet/40e9b2b36148
        #    close the pool and wait for the work to finish
        pool.close()
        pool.join()

        # Doing the "reduce" phase after the workers have finished :)
        assert len(res) == len(q_harlocs)
        for query_frame, resE in enumerate(res):
            resEIndex = resE[0]
            resE = resE[1]
            assert resEIndex == query_frame
            # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
            #votes_space[:, query_frame - 1] = votes
            votes_space[:, query_frame] = resE

        for query_frame in range(len(q_harlocs)):
            if crop_flag == 0:
                HH[:, query_frame] = 1
            else:
                HH[:, query_frame] = spatial_consistency.spatial_consistency(space_xy,
                                            qcen, len(r_harlocs), st_threshold, crop_flag)

        try:
            np.savez_compressed("votes_space%d" % scale_index, votes_space)
            np.savez_compressed("HH%d" % scale_index, HH)
        except:
            common.DebugPrintErrorTrace()

        return votes_space, HH
        """

    """
    We substitute q - 1 with q, since we want
      to number arrays from 0 (not from 1 like in Matlab).
    """
    for query_frame in range(len(q_harlocs)):
        common.DebugPrint("multiscale_quad_retrieval(): Starting iteration "
                          "query_frame = %d" % query_frame)

        """
        We make pp reference the desired multiharloc list for the query video
           frame query_frame
        """
        pp = q_harlocs[query_frame]

        points = pp[pp[:, 2] == scale_index, 0:2]
        qout, qcen, qmaxdis, qori = findquads.findquads(points, md_threshold, 0)

        if common.MY_DEBUG_STDOUT:
            print("multiscale_quad_retrieval(): query_frame = %d, "
                  "qout.shape (number of quads for query frame query_frame) = "
                  "%s" % (query_frame, str(qout.shape)))

        space_xy = np.zeros((qcen.shape[0], 2 * len(r_harlocs))) + np.nan
        votes = np.zeros((len(r_harlocs), 1))

        assert isinstance(tolers, float)

        if common.MY_DEBUG_STDOUT:
            common.DebugPrint("multiscale_quad_retrieval(): quads of query "
                              "frame %d are: " % query_frame)
            common.DebugPrint("  qout = %s" % str(qout))

        """
        Alex: for each quad (4 floats) of the query frame from Harris feature of
        scale scale_index
          Note: all_id stores the reference frame id for each quad descriptor.
        """
        """
        We substitute queryFrameQuad - 1 with queryFrameQuad, since we want
            to number arrays from 0 (not from 1 like in Matlab).
        """
        for queryFrameQuad in range(qout.shape[0]):
            common.DebugPrint("multiscale_quad_retrieval(): Starting iteration "
                              "queryFrameQuad = %d" % queryFrameQuad)
            """
            Matlab's polymorphism is really bugging here: although it's
                normally a float, tolers is considered to be a size 1 vector...
                so len(tolers) == 1
            """
            """
            We substitute tol_i - 1 with tol, since we want
                to number arrays from 0 (not from 1 like in Matlab).
            """
            for tol_i in range(1):
                tol = tolers

                # default for first PAMI with tol= 0.1 approximately
                # NOTE: SciPy's KDTree finds a few more results, in some cases,
                #    than the Matlab code from Evangelidis.
                # tol is a scalar representing the radius of the ball
                if config.KDTREE_IMPLEMENTATION == 0:
                    idx = r_quads_tree.query_ball_point(qout[queryFrameQuad, :],
                                                        tol)
                elif config.KDTREE_IMPLEMENTATION == 1:
                    pt = qout[queryFrameQuad, :]
                    pt = np.array([[pt[0], pt[1], pt[2], pt[3]]],
                                  dtype=np.float32)
                    retval, idx, dists = r_quads_tree.radiusSearch(
                        query=pt,
                        radius=(tol ** 2),
                        maxResults=NUM_MAX_ELEMS,
                        params=search_params)
                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "radiusSearch's retval (at "
                                          "query_frame=%d, queryFrameQuad=%d) "
                                          "is %d" %
                                          (query_frame, queryFrameQuad, retval))
                    idx = idx[0]
                    dists = dists[0]
                    """
                    Note: retval is the number of neighbors returned from the 
                    radiusSearch().
                    But the idx and the dists can have more elements than the
                    returned retval.
                    """
                    idx = idx[: retval]
                    dists = dists[: retval]

                if common.MY_DEBUG_STDOUT:
                    print("multiscale_quad_retrieval(): "
                          "qout[queryFrameQuad, :] = %s" %
                          str(qout[queryFrameQuad, :]))
                    print("multiscale_quad_retrieval(): "
                          "idx = %s" % str(idx))
                    print("multiscale_quad_retrieval(): "
                          "dists = %s" % str(dists))
                    print("multiscale_quad_retrieval(): "
                          "tol = %s" % str(tol))
                    if config.KDTREE_IMPLEMENTATION == 0:
                        print("multiscale_quad_retrieval(): "
                              "r_quads_tree.data[idx] = %s" %
                              str(r_quads_tree.data[idx]))

                if common.MY_DEBUG_STDOUT:
                    a = qout[queryFrameQuad, :]
                    if config.KDTREE_IMPLEMENTATION == 0:
                        for myI, index in enumerate(idx):
                            b = r_quads_tree.data[index]
                    else:
                        pass
                idx = np.array(idx)

                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "all_max.shape = %s" % str(all_max.shape))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "qmaxdis.shape = %s" % str(qmaxdis.shape))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "qmaxdis = %s" % str(qmaxdis))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "qori.shape = %s" % str(qori.shape))
                    common.DebugPrint("multiscale_quad_retrieval(): "
                                      "qori = %s" % str(qori))

                if len(idx) == 0:
                    # NOT A GOOD IDEA: continue
                    dis_idx = np.array([])
                    ori_idx = np.array([])
                else:
                    if common.MY_DEBUG_STDOUT:
                        print("multiscale_quad_retrieval(): "
                              "queryFrameQuad = %s" % str(queryFrameQuad))
                        print("multiscale_quad_retrieval(): "
                              "all_max[idx] = %s" % str(all_max[idx]))
                        print("multiscale_quad_retrieval(): "
                              "qmaxdis[queryFrameQuad] = %s" %
                              str(qmaxdis[queryFrameQuad]))

                    if USE_GPS_COORDINATES:
                        # We look only at a part of the reference video
                        """
                        Since in some cases the video temporal alignment is
                            difficult to do due to similar portions in the
                            trajectory (see the drone videos, clip 3_some_lake)
                            we "guide" the temporal alignment by restricting
                            the reference frame search space - this is useful
                            when we have the geolocation (GPS) coordinate for
                            each frame.
                        """
                        if common.MY_DEBUG_STDOUT:
                            print("multiscale_quad_retrieval(): "
                                  "all_id = %s" % str(all_id))

                        if all_id.ndim == 2:
                            # TODO: put this at the beginning of the
                            #  function
                            assert all_id.shape[1] == 1
                            """
                            We flatten the array all_id
                              Note: We don't use order="F" since it's
                                    basically 1-D array
                            """
                            all_id = np.ravel(all_id)

                        # TODO: put start and end frame in config - or compute
                        #  it from geolocation
                        sub_idx = np.logical_and((all_id[idx] >= 2030 - 928),
                                                 (all_id[idx] <= 2400 - 928))
                        idx = idx[sub_idx]

                        if common.MY_DEBUG_STDOUT:
                            print("multiscale_quad_retrieval(): "
                                  "all_id = %s" % str(all_id))
                            print("multiscale_quad_retrieval(): "
                                  "sub_idx = %s" % str(sub_idx))
                            print("multiscale_quad_retrieval(): "
                                  "idx = %s" % str(idx))

                    if FILTER:
                        dis_idx = np.abs(
                            qmaxdis[queryFrameQuad] - all_max[idx]) < maxdis

                        if common.MY_DEBUG_STDOUT:
                            common.DebugPrint("multiscale_quad_retrieval(): "
                                              "dis_idx = %s" % str(dis_idx))

                        idx = idx[dis_idx]

                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "idx (after idx = idx[dis_idx]) = "
                                          "%s" % str(idx))

                    if FILTER:
                        ori_idx = np.abs(
                            qori[queryFrameQuad] - all_ori[idx]) < maxori

                        if common.MY_DEBUG_STDOUT:
                            common.DebugPrint("multiscale_quad_retrieval(): "
                                              "ori_idx = %s" % str(ori_idx))

                        idx = idx[ori_idx]

                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # spatio-temporal consistency
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################

                if idx.size > 0:
                    if crop_flag == 0:
                        if FILTER:
                            """
                            Alex: this is a simple procedure of eliminating 
                            False Positive (FP) matches, as presented in 
                            Section 4.2 of TPAMI 2013 paper.
                            Basically it filters out quad matches that have
                            centroids st_threshold away from the query quad.
                            Note: all_cen are the controids of all reference
                                quads.
                            """
                            dy = qcen[queryFrameQuad, 0] - all_cen[idx, 0]
                            dx = qcen[queryFrameQuad, 1] - all_cen[idx, 1]
                            D = dy ** 2 + dx ** 2
                            co_idx = D < pow(st_threshold, 2)
                            idx = idx[co_idx]
                    else:
                        """
                        We substitute iii - 1 with iii, since we want
                            to number arrays from 0 (not from 1 like in Matlab).
                        """
                        for iii in range(len(idx)):
                            space_xy[queryFrameQuad,
                            (all_id[idx[iii]] - rd_start) * 2: (all_id[idx[
                                iii] - 1] - rd_start) * 2 + 1] = \
                                all_cen[idx[iii], :]

                    # It has to be an np.array because we multiply it with a
                    # scalar
                    histo_range = np.array(range(rd_start, rd_end + 1))
                    hh = Matlab.hist(x=all_id[idx], binCenters=histo_range)

                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "hh = %s" % (str(hh)))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "hh.shape = %s" % (str(hh.shape)))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "all_id.shape = %s" % (
                                              str(all_id.shape)))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "idx = %s" % (str(idx)))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "idx.shape = %s" % (str(idx.shape)))

                    # % nz can be computed more optimally
                    nz = np.nonzero(hh != 0)[0]
                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "nz = %s" % (str(nz)))
                        common.DebugPrint("multiscale_quad_retrieval(): "
                                          "nz.shape = %s" % (str(nz.shape)))

                    if nz.size > 0:
                        my_val = pow(
                            math.log10(float(len(r_harlocs)) / len(nz)), 2)

                        if common.MY_DEBUG_STDOUT:
                            common.DebugPrint("multiscale_quad_retrieval(): "
                                              "len(r_harlocs) = %d" % len(
                                               r_harlocs))
                            common.DebugPrint("multiscale_quad_retrieval(): "
                                              "len(nz) = %d" % len(nz))
                            common.DebugPrint("multiscale_quad_retrieval(): "
                                              "my_val = %.5f" % my_val)
                        # PREVIOUSLY
                        votes[nz, tol_i] = votes[nz, tol_i] + my_val

        if common.MY_DEBUG_STDOUT:
            print("multiscale_quad_retrieval(): "
                  "votes.shape = %s" % (str(votes.shape)))
            if (np.abs(votes) < 1.0e-10).all():
                print("multiscale_quad_retrieval(): votes = 0 (all zeros)")
            else:
                print("multiscale_quad_retrieval(): votes = %s" % (str(votes)))

        # Note: since votes is basically a 1-D vector, we don't use the
        # Fortran order
        votes_space[:, query_frame] = np.ravel(votes)

        if crop_flag == 0:
            HH[:, query_frame] = 1
        else:
            HH[:, query_frame] = spatial_consistency.spatial_consistency(
                space_xy,
                qcen, len(r_harlocs), st_threshold, crop_flag)

    if common.MY_DEBUG_STDOUT:
        print("multiscale_quad_retrieval(scale_index=%d): "
              "votes_space =\n%s" % (scale_index, str(votes_space)))

    try:
        np.savez_compressed("votes_space%d" % scale_index, votes_space)
        np.savez_compressed("HH%d" % scale_index, HH)
    except:
        common.DebugPrintErrorTrace()

    t2 = float(cv2.getTickCount())
    my_time = (t2 - t1) / cv2.getTickFrequency()
    print("multiscale_quad_retrieval() took %.6f [sec]" % my_time)

    return votes_space, HH
コード例 #3
0
def IterationStandaloneMQR(queryFrame):
    r_quadsTree = g.r_quadsTree
    r_harlocs = g.r_harlocs
    q_harlocs = g.q_harlocs
    md_threshold = g.md_threshold
    st_threshold = g.st_threshold
    all_ori = g.all_ori
    all_id = g.all_id
    all_max = g.all_max
    all_cen = g.all_cen
    nos = g.nos
    scale_index = g.scale_index
    cropflag = g.cropflag
    sequence = g.sequence
    RD_start = g.RD_start
    RD_end = g.RD_end
    MAXDIS = g.MAXDIS
    MAXORI = g.MAXORI
    tolers = g.tolers
    """
    common.DebugPrint( \
              "Entered IterationStandaloneMQR(): crossref=%s, captureQ=%s, "\
                        "captureR=%s, refined_crossref=%s, warp_p=%s, "
                        "x0=%s, y0=%s, start=%s, t=%d, iWhile=%d." % \
                    (str(crossref), str(captureQ), str(captureR), \
                         str(g.refined_crossref), str(g.warp_p), \
                         str(g.x0), str(g.y0), str(g.start), g.t, iWhile));
    common.DebugPrint("IterationStandalone(): id(g)=%s" % str(id(g)));
    """

    # tic
    """
    str1=['load ' q_path QD(q).name]
    eval(str1)
    """
    """
    We make pp reference the desired multiharloc list for the query video
        frame queryFrame
    """
    pp = q_harlocs[queryFrame]
    #pp = np.array(pp);

    #common.DebugPrint("multiscale_quad_retrieval(): pp = %s" % str(pp));
    """
    Alex: for the query frame queryFrame we retrieve, for scale scale_index, the
        harris features in var points.
      Then we build the quads from points.
      Then for each quad (4 float values) we query the corresponding scale
        kd-tree, and we get the indices.
        Then we build the histogram and compute idf, ....!!!!

     Note: scale is 1 for original frame resolution and the higher
        we go we have lower image resolutions (we go higher in the
        Guassian pyramid I think).
    """
    #[qout,qcen,qmaxdis,qori]=findquads(pp(pp(:,3)==scale_index,1:2),md_threshold,0);
    points = pp[pp[:, 2] == scale_index, 0:2]
    qout, qcen, qmaxdis, qori = findquads.findquads(points, md_threshold, 0)

    common.DebugPrint("multiscale_quad_retrieval(): queryFrame = %d, " \
                        "qout.shape = %s" % (queryFrame, str(qout.shape)))

    # disp([num2str(q) ' of ' num2str(length(QD)) ' -> ' num2str(size(qout,1)) ' quads'])

    #space_xy=zeros(size(qcen,1),2*length(RD))+nan;
    #space_xy = np.zeros( (qcen.shape[0], 2 * len(RD)) ) + np.nan;
    space_xy = np.zeros((qcen.shape[0], 2 * len(r_harlocs))) + np.nan

    #     votes=zeros(length(RD),1)
    #votes=zeros(length(RD),length(tolers));
    #votes = np.zeros( (len(RD), 1) );
    votes = np.zeros((len(r_harlocs), 1))

    #nep = np.array([]);
    #m_points = np.array([]);

    assert isinstance(tolers, float)
    """
    We substitute queryFrameQuad - 1 with queryFrameQuad, since we want
        to number arrays from 0 (not from 1 like in Matlab).
    """
    #for queryFrameQuad in range(1, qout.shape[0] + 1):
    for queryFrameQuad in range(qout.shape[0]):
        """
        Matlab's polymorphism is really bugging here: although it's
            normally a float, tolers is considered to be a size 1 vector...
            so len(tolers) == 1
        """
        #for tol_i in range(1, len(tolers) + 1):
        #    tol = tolers[tol_i - 1]
        """
        We substitute tol_i - 1 with tol, since we want
            to number arrays from 0 (not from 1 like in Matlab).
        """
        #for tol_i in range(1, 1 + 1):
        for tol_i in range(1):
            tol = tolers

            #common.DebugPrint("multiscale_quad_retrieval(): qout[i - 1, :] = %s" % str(qout[i - 1, :]))

            #% default for first PAMI with tol= 0.1 approximately

            # NOTE: SciPy's KDTree finds a few more results, in some cases,
            #    than the Matlab code from Evangelidis.

            #idx, di = kdtree_ball_query(tree, qout(i, :), tol)
            #idx, distKD = kdtree_ball_query(tree, qout[i - 1, :], tol)
            #idx, di = tree.query(x=xQuery, k=4)
            #resPoints = [data[i] for i in resBallIndices]
            # tol is a scalar representing the radius of the ball
            if config.KDTREE_IMPLEMENTATION == 0:
                idx = r_quadsTree.query_ball_point(qout[queryFrameQuad, :],
                                                   tol)
            elif config.KDTREE_IMPLEMENTATION == 1:
                #pt = qout[queryFrameQuad - 1, :].astype(np.float32);
                pt = qout[queryFrameQuad, :]
                pt = np.array([[pt[0], pt[1], pt[2], pt[3]]], dtype=np.float32)
                retval, idx, dists = r_quadsTree.radiusSearch( \
                                            query=pt, \
                                            radius=(tol**2), \
                                            maxResults=NUM_MAX_ELEMS, \
                                            params=search_params)
                if common.MY_DEBUG_STDOUT and DBGPRINT:
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "retval (number NNs) = %s" % str(retval));
                    """
                    common.DebugPrint( \
                        "multiscale_quad_retrieval(): radiusSearch's retval " \
                        "(at queryFrame=%d, queryFrameQuad=%d) is %d\n" % (queryFrame, queryFrameQuad, retval))
                idx = idx[0]
                dists = dists[0]
                idx = idx[:retval]
                dists = dists[:retval]

            if common.MY_DEBUG_STDOUT and DBGPRINT:
                print("multiscale_quad_retrieval(): " \
                        "qout[queryFrameQuad, :] = %s" % str(qout[queryFrameQuad, :]))
                print("multiscale_quad_retrieval(): " \
                                    "idx = %s" % str(idx))
                print("multiscale_quad_retrieval(): " \
                                    "tol = %s" % str(tol))
                if config.KDTREE_IMPLEMENTATION == 0:
                    print("multiscale_quad_retrieval(): " \
                            "r_quadsTree.data[idx] = %s" % \
                            str(r_quadsTree.data[idx]))

            # We print the distances to the points returned in idx
            a = qout[queryFrameQuad, :]
            if False:  #!!!! This is just for debugging purposes
                for myI, index in enumerate(idx):
                    b = r_quadsTree.data[index]
                    """
                    if False:
                        common.DebugPrint("multiscale_quad_retrieval(): distance to " \
                            "%d point (%s) inside ball = %.4f" % \
                            (myI, str(b), npla.norm(a - b)));
                    """
            idx = np.array(idx)

            #if False:
            if common.MY_DEBUG_STDOUT:
                common.DebugPrint("multiscale_quad_retrieval(): " \
                            "all_max.shape = %s" % str(all_max.shape))
                common.DebugPrint("multiscale_quad_retrieval(): " \
                            "qmaxdis.shape = %s" % str(qmaxdis.shape))
                common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qmaxdis = %s" % str(qmaxdis))
                common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qori.shape = %s" % str(qori.shape))
                common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qori = %s" % str(qori))

            #dis_idx=abs(qmaxdis(i)-all_max(idx))<MAXDIS;
            if len(idx) == 0:
                # NOT A GOOD IDEA: continue;
                #idx = np.array([]);
                dis_idx = np.array([])
                ori_idx = np.array([])
            else:
                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "queryFrameQuad = %s" % str(queryFrameQuad))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "all_max[idx] = %s" % str(all_max[idx]))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "qmaxdis[queryFrameQuad] = %s" % str(qmaxdis[queryFrameQuad]))

                dis_idx = np.abs(qmaxdis[queryFrameQuad] -
                                 all_max[idx]) < MAXDIS

                #if False:
                if common.MY_DEBUG_STDOUT:
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "idx = %s" % str(idx));
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "dis_idx = %s" % str(dis_idx))

                #idx=idx(dis_idx)
                idx = idx[dis_idx]

                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "idx (after idx = idx[dis_idx]) = %s" % str(idx))

                #ori_idx=abs(qori(i)-all_ori(idx))<MAXORI;
                ori_idx = np.abs(qori[queryFrameQuad] - all_ori[idx]) < MAXORI

                #if False:
                if common.MY_DEBUG_STDOUT:
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "all_ori = %s" % str(all_ori));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                            "qori[queryFrameQuad] = %s" % str(qori[queryFrameQuad]));

                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "ori_idx = %s" % str(ori_idx))

                #idx=idx(ori_idx);
                idx = idx[ori_idx]

            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            #% spatio-temporal consistency
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################

            #if numel(idx) > 0:
            if idx.size > 0:
                # Normally cropflag == 0
                if cropflag == 0:
                    dy = qcen[queryFrameQuad, 0] - all_cen[idx, 0]
                    dx = qcen[queryFrameQuad, 1] - all_cen[idx, 1]

                    #D=dy.^2+dx.^2;
                    D = dy**2 + dx**2

                    co_idx = D < pow(st_threshold, 2)

                    idx = idx[co_idx]
                else:
                    """
                    We substitute iii - 1 with iii, since we want
                        to number arrays from 0 (not from 1 like in Matlab).
                    """
                    #for iii in range(1, len(idx) + 1):
                    for iii in range(len(idx)):
                        #space_xy(i,(all_id(idx(iii))-RD_start)*2+1:(all_id(idx(iii))-RD_start)*2+2) = all_cen(idx(iii),:)
                        space_xy[queryFrameQuad, \
                                (all_id[idx[iii]] - RD_start) * 2: (all_id[idx[iii] - 1] - RD_start) * 2 + 1] = \
                                all_cen[idx[iii], :]

                #hh=hist(all_id(idx),RD_start:RD_end);
                # It has to be an np.array because we multiply it with a scalar
                histoRange = np.array(range(RD_start, RD_end + 1))
                hh = Matlab.hist(x=all_id[idx], binCenters=histoRange)

                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "hh = %s" % (str(hh)))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "hh.shape = %s" % (str(hh.shape)))
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "all_id = %s" % (str(all_id)));
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "all_id.shape = %s" % (str(all_id.shape)))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "idx = %s" % (str(idx)))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "idx.shape = %s" % (str(idx.shape)))

                # % nz can be computed more optimally
                #nz=find(hh~=0); # nz can be computed more optimally
                # np.nonzero() always returns a tuple, even if it contains 1 element since hh has only 1 dimension
                nz = np.nonzero(hh != 0)[0]
                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "nz = %s" % (str(nz)))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "nz.shape = %s" % (str(nz.shape)))

                #if numel(nz) > 0:
                if nz.size > 0:
                    #%%----text-retrieval-like
                    #votes(nz, tol_i) = votes(nz, tol_i) + log10(length(RD) / (length(nz)))^2 #Note: log10(a)^2 means (log10(a))^2 #PREVIOUSLY
                    #myVal = pow(math.log10(float(len(RD)) / len(nz)), 2);
                    myVal = pow(math.log10(float(len(r_harlocs)) / len(nz)), 2)

                    #if False:
                    if common.MY_DEBUG_STDOUT:
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "len(RD) = %d" % len(RD));
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "len(r_harlocs) = %d" % len(r_harlocs))
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "len(nz) = %d" % len(nz))
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "myVal = %.5f" % myVal)

                    # PREVIOUSLY
                    votes[nz, tol_i] = votes[nz, tol_i] + myVal
                    #   votes(nz)=votes(nz)+log10(length(RD)/(length(nz)));
                    #   votes(nz)=votes(nz)+1;

    #if False:
    if common.MY_DEBUG_STDOUT:
        """
        common.DebugPrint("multiscale_quad_retrieval(): " \
                "Votes_space.shape = %s" % (str(Votes_space.shape)));
        common.DebugPrint("multiscale_quad_retrieval(): " \
                "votes.shape = %s" % (str(votes.shape)));
        """

        common.DebugPrint("multiscale_quad_retrieval(): " \
                            "votes.shape = %s" % (str(votes.shape)))
        common.DebugPrint("multiscale_quad_retrieval(): " \
                            "votes = %s" % (str(votes)))

    return (queryFrame, np.ravel(votes))

    # NOT performing these in each worker - the central dispatcher will do these
    if False:
        #Votes_space(:,q)=votes;
        # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
        #Votes_space[:, queryFrame - 1] = votes;
        Votes_space[:, queryFrame] = np.ravel(votes)

        if cropflag == 0:
            HH[:, queryFrame] = 1
        else:
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(RD), st_threshold, cropflag);
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(r_harlocs), st_threshold, cropflag)
コード例 #4
0
def multiscale_quad_retrieval(r_quadsTree, r_harlocs, q_harlocs, md_threshold, st_threshold, \
            all_ori, all_id, all_max, all_cen, nos, scale_index, cropflag, \
            sequence):
    common.DebugPrint("Entered multiscale_quad_retrieval(): " \
                        "md_threshold = %s, st_threshold = %s." % \
                        (str(md_threshold), \
                        str(st_threshold)))

    assert len(r_harlocs) != 0
    assert len(q_harlocs) != 0

    try:
        Votes_space = np.load("Votes_space%d.npz" % scale_index)['arr_0']
        HH = np.load("HH%d.npz" % scale_index)['arr_0']
        return Votes_space, HH
    except:
        common.DebugPrintErrorTrace()

    if common.MY_DEBUG_STDOUT and DBGPRINT:
        common.DebugPrint("multiscale_quad_retrieval(): r_quadsTree = %s" % \
                            str(r_quadsTree))

        common.DebugPrint("multiscale_quad_retrieval(): len(r_harlocs) = %d" %
                          len(r_harlocs))
        common.DebugPrint("multiscale_quad_retrieval(): r_harlocs = %s" %
                          str(r_harlocs))

        common.DebugPrint("multiscale_quad_retrieval(): q_harlocs = %s" %
                          str(q_harlocs))
        common.DebugPrint("multiscale_quad_retrieval(): md_threshold = %s" %
                          str(md_threshold))
        print("multiscale_quad_retrieval(): st_threshold = %s" %
              str(st_threshold))
        #common.DebugPrint("multiscale_quad_retrieval(): all_ori, all_id, all_max, all_cen, nos, scale_index, cropflag = %s" % str(all_ori, all_id, all_max, all_cen, nos, scale_index, cropflag));
        common.DebugPrint("multiscale_quad_retrieval(): all_id = %s" %
                          str(all_id))
        common.DebugPrint("multiscale_quad_retrieval(): all_id.shape = %s" %
                          (str(all_id.shape)))
        #common.DebugPrint("multiscale_quad_retrieval(): all_max, all_cen, nos, scale_index, cropflag = %s" % str(all_max, all_cen, nos, scale_index, cropflag));
        #common.DebugPrint("multiscale_quad_retrieval(): all_max = %s" % str(all_max));
        #common.DebugPrint("multiscale_quad_retrieval(): all_cen, nos, scale_index, cropflag = %s" % str(all_cen, nos, scale_index, cropflag));
        common.DebugPrint("multiscale_quad_retrieval(): sequence = %s" %
                          str(sequence))
        print("multiscale_quad_retrieval(): cropflag = %s" % str(cropflag))

    t1 = float(cv2.getTickCount())

    if scale_index > nos:
        assert scale_index <= nos
        #error('Wrong scale index or number-of-scales');

    #QD = dir([q_path "multiharlocs*.mat"])
    #QD = [q_path + "multiharlocs*.mat"]
    #QD = q_harlocs;

    #RD = dir([r_path "multiharlocs*.mat"])
    #RD = [r_path + "multiharlocs*.mat"]
    #RD = r_harlocs;

    #TODO: take out RD_start
    #RD_start = str2num(RD(1).name(end - 9 : end - 4))
    #RD_start = int(RD[0][-9 : -4])
    RD_start = 0

    #RD_end = str2num(RD(end).name(end - 9 : end - 4))
    #RD_end = int(RD[-1][-9 : -4])
    #RD_end = len(RD) - 1;
    RD_end = len(r_harlocs) - 1

    if False:  # n_d not used anywhere
        #n_d = hist(all_id, RD_start : RD_end)
        #n_d = hist[all_id, RD_start : RD_end]
        n_d = Matlab.hist(x=all_id, \
                      binCenters=np.array(range(RD_start, RD_end + 1)) )

        #cross_indices = np.zeros( (len(QD), 2) );
        cross_indices = np.zeros((len(q_harlocs), 2))

    j = 1

    #tic
    #ORI = np.array([]); # ORI NOT used anywhere
    """
    Inspired from
      https://stackoverflow.com/questions/17559140/matlab-twice-as-fast-as-numpy
        BUT doesn't help in this case:
    Votes_space = np.asfortranarray(np.zeros( (len(RD), len(QD)) ));
    """
    #Votes_space = np.zeros( (len(RD), len(QD)) );
    Votes_space = np.zeros((len(r_harlocs), len(q_harlocs)))

    # Make a distinct copy of HH from Votes_space...
    #HH = Votes_space.copy().astype(np.int16); #Votes_space + 0;
    #HH = np.zeros((len(RD), len(QD)), dtype=np.int8);
    HH = np.zeros((len(r_harlocs), len(q_harlocs)), dtype=np.int8)
    #!!!!TODO use MAYBE even np.bool - OR take it out

    #common.DebugPrint("multiscale_quad_retrieval(): Votes_space = %s,\n       HH = %s" % (str(Votes_space), str(HH)))

    tolers = 0.1 - float(scale_index) / 100.0
    # it helps to make more strict the threshold as the scale goes up
    # tolers = 0.15 - float(scale_index) / 100.0;

    MAXDIS = 3 + scale_index
    MAXORI = 0.25
    """
    !!!!TODO TODO: I am using multiprocessing.Poll and return votes;
      the dispatcher assembles the results,
        but the results are NOT the same with the serial case - although they
           look pretty decent, but they seem to be suboptimal - dp_Alex returns
             suboptimal cost path for USE_MULTITHREADING == True instead of
             False.
             (Note: running under the same preconditions
                 multiscale_quad_retrieval I got the same results in dp_Alex().
    """
    if False:  #config.USE_MULTITHREADING == True:
        global g
        g.r_quadsTree = r_quadsTree
        g.r_harlocs = r_harlocs
        g.q_harlocs = q_harlocs
        g.md_threshold = md_threshold
        g.st_threshold = st_threshold
        g.all_ori = all_ori
        g.all_id = all_id
        g.all_max = all_max
        g.all_cen = all_cen
        g.nos = nos
        g.scale_index = scale_index
        g.cropflag = cropflag
        g.sequence = sequence
        g.RD_start = RD_start
        g.RD_end = RD_end
        g.MAXDIS = MAXDIS
        g.MAXORI = MAXORI
        g.tolers = tolers
        """
        Start worker processes to use on multi-core processor (able to run
           in parallel - no GIL issue if each core has it's own VM)
        """
        pool = multiprocessing.Pool(processes=config.numProcesses)
        print("multiscale_quad_retrieval(): Spawned a pool of %d workers" % \
                                config.numProcesses)

        listParams = range(0, len(q_harlocs))
        #!!!!TODO: use counterStep, config.initFrame[indexVideo]

        #res = pool.map(IterationStandaloneMQR, listParams);
        # See https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
        res = pool.map(func=IterationStandaloneMQR, iterable=listParams, \
                        chunksize=1)

        print("Pool.map returns %s" % str(res))
        #x0.size + 1
        """
        From https://medium.com/building-things-on-the-internet/40e9b2b36148
            close the pool and wait for the work to finish
        """
        pool.close()
        pool.join()

        # Doing the "reduce" phase after the workers have finished :)
        assert len(res) == len(q_harlocs)
        for queryFrame, resE in enumerate(res):
            resEIndex = resE[0]
            resE = resE[1]
            assert resEIndex == queryFrame
            # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
            #Votes_space[:, queryFrame - 1] = votes;
            Votes_space[:, queryFrame] = resE

        for queryFrame in range(len(q_harlocs)):
            if cropflag == 0:
                HH[:, queryFrame] = 1
            else:
                """
                HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                            qcen, len(RD), st_threshold, cropflag);
                """
                HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                            qcen, len(r_harlocs), st_threshold, cropflag)

        try:
            np.savez_compressed("Votes_space%d" % scale_index, Votes_space)
            np.savez_compressed("HH%d" % scale_index, HH)
        except:
            common.DebugPrintErrorTrace()

        return Votes_space, HH
    """
    We substitute q - 1 with q, since we want
      to number arrays from 0 (not from 1 like in Matlab).
    """
    #for q=1:length(QD)
    #for q in range(1, len(QD) + 1):
    #for queryFrame in range(len(QD)):
    for queryFrame in range(len(q_harlocs)):
        common.DebugPrint(
            "multiscale_quad_retrieval(): Starting iteration queryFrame = %d" %
            queryFrame)
        # tic
        """
        str1=['load ' q_path QD(q).name]
        eval(str1)
        """
        """
        We make pp reference the desired multiharloc list for the query video
           frame queryFrame
        """
        pp = q_harlocs[queryFrame]
        #pp = np.array(pp);

        #common.DebugPrint("multiscale_quad_retrieval(): pp = %s" % str(pp));

        #[qout,qcen,qmaxdis,qori]=findquads(pp(pp(:,3)==scale_index,1:2),md_threshold,0);
        points = pp[pp[:, 2] == scale_index, 0:2]
        qout, qcen, qmaxdis, qori = findquads.findquads(
            points, md_threshold, 0)

        if common.MY_DEBUG_STDOUT and DBGPRINT:
            print("multiscale_quad_retrieval(): queryFrame = %d, " \
                          "qout.shape (number of quads for query frame queryFrame) = %s" % \
                                                 (queryFrame, str(qout.shape)))

        # disp([num2str(q) ' of ' num2str(length(QD)) ' -> ' num2str(size(qout,1)) ' quads'])

        #space_xy=zeros(size(qcen,1),2*length(RD))+nan;
        #space_xy = np.zeros( (qcen.shape[0], 2 * len(RD)) ) + np.nan;
        space_xy = np.zeros((qcen.shape[0], 2 * len(r_harlocs))) + np.nan

        #     votes=zeros(length(RD),1)
        #votes=zeros(length(RD),length(tolers));
        #votes = np.zeros( (len(RD), 1) );
        votes = np.zeros((len(r_harlocs), 1))

        #nep = np.array([]);
        #m_points = np.array([]);

        assert isinstance(tolers, float)

        if common.MY_DEBUG_STDOUT:
            common.DebugPrint(
                "multiscale_quad_retrieval(): quads of query frame %d are: " %
                queryFrame)
            common.DebugPrint("  qout = %s" % str(qout))
        """
        Alex: for each quad (4 floats) of the query frame from Harris feature of scale scale_index
          Note: all_id stores the reference frame id for each quad descriptor.
        """
        """
        We substitute queryFrameQuad - 1 with queryFrameQuad, since we want
            to number arrays from 0 (not from 1 like in Matlab).
        """
        #for queryFrameQuad in range(1, qout.shape[0] + 1):
        for queryFrameQuad in range(qout.shape[0]):
            common.DebugPrint(
                "multiscale_quad_retrieval(): Starting iteration queryFrameQuad = %d"
                % queryFrameQuad)
            """
            Matlab's polymorphism is really bugging here: although it's
                normally a float, tolers is considered to be a size 1 vector...
                so len(tolers) == 1
            """
            #for tol_i in range(1, len(tolers) + 1):
            #    tol = tolers[tol_i - 1]
            """
            We substitute tol_i - 1 with tol, since we want
                to number arrays from 0 (not from 1 like in Matlab).
            """
            #for tol_i in range(1, 1 + 1):
            for tol_i in range(1):
                tol = tolers
                """
                # TODO: done below - take out this dbg print
                if DBGPRINT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "qout[queryFrameQuad, :] = %s" % \
                                        str(qout[queryFrameQuad, :]))
                """

                #% default for first PAMI with tol= 0.1 approximately

                # NOTE: SciPy's KDTree finds a few more results, in some cases,
                #    than the Matlab code from Evangelidis.

                #idx, di = kdtree_ball_query(tree, qout(i, :), tol)
                #idx, distKD = kdtree_ball_query(tree, qout[i - 1, :], tol)
                #idx, di = tree.query(x=xQuery, k=4)
                #resPoints = [data[i] for i in resBallIndices]
                # tol is a scalar representing the radius of the ball
                if config.KDTREE_IMPLEMENTATION == 0:
                    idx = r_quadsTree.query_ball_point(qout[queryFrameQuad, :],
                                                       tol)
                elif config.KDTREE_IMPLEMENTATION == 1:
                    #pt = qout[queryFrameQuad - 1, :].astype(np.float32);
                    pt = qout[queryFrameQuad, :]
                    pt = np.array([[pt[0], pt[1], pt[2], pt[3]]],
                                  dtype=np.float32)
                    retval, idx, dists = r_quadsTree.radiusSearch( \
                                                query=pt, \
                                                radius=(tol**2), \
                                                maxResults=NUM_MAX_ELEMS, \
                                                params=search_params)
                    if common.MY_DEBUG_STDOUT and DBGPRINT:
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "retval (number NNs) = %s" % str(retval));
                        """
                        common.DebugPrint( \
                            "multiscale_quad_retrieval(): radiusSearch's retval " \
                            "(at queryFrame=%d, queryFrameQuad=%d) is %d" % (queryFrame, queryFrameQuad, retval))

                    idx = idx[0]
                    dists = dists[0]
                    """
                    Note: retval is the number of neighbors returned from the radiusSearch().
                      But the idx and the dists can have more elements than the returned retval.
                    """
                    idx = idx[:retval]
                    dists = dists[:retval]

                if common.MY_DEBUG_STDOUT and DBGPRINT:
                    print("multiscale_quad_retrieval(): " \
                            "qout[queryFrameQuad, :] = %s" % str(qout[queryFrameQuad, :]))
                    print("multiscale_quad_retrieval(): " \
                                      "idx = %s" % str(idx))
                    print("multiscale_quad_retrieval(): " \
                                      "dists = %s" % str(dists))
                    print("multiscale_quad_retrieval(): " \
                                      "tol = %s" % str(tol))
                    if config.KDTREE_IMPLEMENTATION == 0:
                        print("multiscale_quad_retrieval(): " \
                                "r_quadsTree.data[idx] = %s" % \
                                str(r_quadsTree.data[idx]))

                # We print the distances to the points returned in idx
                if common.MY_DEBUG_STDOUT and DBGPRINT:  # This is just for debugging purposes
                    a = qout[queryFrameQuad, :]
                    if config.KDTREE_IMPLEMENTATION == 0:
                        for myI, index in enumerate(idx):
                            b = r_quadsTree.data[index]
                            """
                            if False:
                                common.DebugPrint("multiscale_quad_retrieval(): distance to " \
                                    "%d point (%s) inside ball = %.4f" % \
                                    (myI, str(b), npla.norm(a - b)));
                            """
                    else:
                        pass
                idx = np.array(idx)

                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "all_max.shape = %s" % str(all_max.shape))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "qmaxdis.shape = %s" % str(qmaxdis.shape))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                      "qmaxdis = %s" % str(qmaxdis))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                      "qori.shape = %s" % str(qori.shape))
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                      "qori = %s" % str(qori))

                #dis_idx=abs(qmaxdis(i)-all_max(idx))<MAXDIS;
                if len(idx) == 0:
                    # NOT A GOOD IDEA: continue;
                    #idx = np.array([]);
                    dis_idx = np.array([])
                    ori_idx = np.array([])
                else:
                    if common.MY_DEBUG_STDOUT and DBGPRINT:
                        print("multiscale_quad_retrieval(): " \
                                            "queryFrameQuad = %s" % str(queryFrameQuad))
                        print("multiscale_quad_retrieval(): " \
                            "all_max[idx] = %s" % str(all_max[idx]))
                        print("multiscale_quad_retrieval(): " \
                            "qmaxdis[queryFrameQuad] = %s" % str(qmaxdis[queryFrameQuad]))

                    if USE_GPS_COORDINATES:
                        # We look only at a part of the reference video
                        """
                        Since in some cases the video temporal alignment is
                            difficult to do due to similar portions in the
                            trajectory (see the drone videos, clip 3_some_lake)
                            we "guide" the temporal alignment by restricting
                            the reference frame search space - this is useful
                            when we have the geolocation (GPS) coordinate for
                            each frame.
                        """
                        if common.MY_DEBUG_STDOUT and DBGPRINT:
                            print("multiscale_quad_retrieval(): " \
                                "all_id = %s" % str(all_id))

                        if True:
                            #assert (all_id.ndim == 2) and (all_id.shape[1] == 1);
                            if all_id.ndim == 2:
                                #!!!!TODO TODO: put this at the beginning of the function
                                assert all_id.shape[1] == 1
                                """
                                We flatten the array all_id
                                  Note: We don't use order="F" since it's
                                        basically 1-D array
                                """
                                all_id = np.ravel(all_id)

                        #!!!!TODO: put start and end frame in config - or compute it from geolocation
                        sub_idx = np.logical_and( (all_id[idx] >= 2030 - 928), \
                                                    (all_id[idx] <= 2400 - 928) )
                        idx = idx[sub_idx]

                        if common.MY_DEBUG_STDOUT and DBGPRINT:
                            print("multiscale_quad_retrieval(): " \
                                "all_id = %s" % str(all_id))
                            print("multiscale_quad_retrieval(): " \
                                "sub_idx = %s" % str(sub_idx))
                            print("multiscale_quad_retrieval(): " \
                                "idx = %s" % str(idx))

                    if FILTER:
                        dis_idx = np.abs(qmaxdis[queryFrameQuad] -
                                         all_max[idx]) < MAXDIS

                        #if False:
                        if common.MY_DEBUG_STDOUT:
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                                "idx = %s" % str(idx));
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "dis_idx = %s" % str(dis_idx))

                        #idx=idx(dis_idx)
                        idx = idx[dis_idx]

                    #if False:
                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                            "idx (after idx = idx[dis_idx]) = %s" % str(idx))

                    if FILTER:
                        #ori_idx=abs(qori(i)-all_ori(idx))<MAXORI;
                        ori_idx = np.abs(qori[queryFrameQuad] -
                                         all_ori[idx]) < MAXORI

                        #if False:
                        if common.MY_DEBUG_STDOUT:
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                                    "all_ori = %s" % str(all_ori));
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qori[queryFrameQuad] = %s" % str(qori[queryFrameQuad]));

                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "ori_idx = %s" % str(ori_idx))

                        #idx=idx(ori_idx);
                        idx = idx[ori_idx]

                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                #% spatio-temporal consistency
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################

                #if numel(idx) > 0:
                if idx.size > 0:
                    if cropflag == 0:
                        if FILTER:
                            """
                            Alex: this is a simple procedure of eliminating False
                            Positive (FP) matches, as presented in Section 4.2 of
                            TPAMI 2013 paper.
                            Basically it filters out quad matches that have
                            centroids st_threshold away from the query quad.
                            Note: all_cen are the controids of all reference
                                quads.
                            """
                            dy = qcen[queryFrameQuad, 0] - all_cen[idx, 0]
                            dx = qcen[queryFrameQuad, 1] - all_cen[idx, 1]

                            #D=dy.^2+dx.^2;
                            D = dy**2 + dx**2

                            co_idx = D < pow(st_threshold, 2)

                            idx = idx[co_idx]
                    else:
                        """
                        We substitute iii - 1 with iii, since we want
                            to number arrays from 0 (not from 1 like in Matlab).
                        """
                        #for iii in range(1, len(idx) + 1):
                        for iii in range(len(idx)):
                            #space_xy(i,(all_id(idx(iii))-RD_start)*2+1:(all_id(idx(iii))-RD_start)*2+2) = all_cen(idx(iii),:)
                            space_xy[queryFrameQuad, \
                                    (all_id[idx[iii]] - RD_start) * 2: (all_id[idx[iii] - 1] - RD_start) * 2 + 1] = \
                                    all_cen[idx[iii], :]

                    #hh=hist(all_id(idx),RD_start:RD_end);
                    # It has to be an np.array because we multiply it with a scalar
                    histoRange = np.array(range(RD_start, RD_end + 1))
                    hh = Matlab.hist(x=all_id[idx], binCenters=histoRange)

                    #if False:
                    #if True:
                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "hh = %s" % (str(hh)))
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "hh.shape = %s" % (str(hh.shape)))
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "all_id = %s" % (str(all_id)));
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "all_id.shape = %s" % (str(all_id.shape)))
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "idx = %s" % (str(idx)))
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "idx.shape = %s" % (str(idx.shape)))

                    # % nz can be computed more optimally
                    #nz=find(hh~=0); # nz can be computed more optimally
                    # np.nonzero() always returns a tuple, even if it contains 1 element since hh has only 1 dimension
                    nz = np.nonzero(hh != 0)[0]
                    #if False:
                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                          "nz = %s" % (str(nz)))
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                          "nz.shape = %s" % (str(nz.shape)))

                    #if numel(nz) > 0
                    if nz.size > 0:
                        #%%----text-retrieval-like
                        #votes(nz, tol_i) = votes(nz, tol_i) + log10(length(RD) / (length(nz)))^2 #PREVIOUSLY
                        #myVal = pow(math.log10(float(len(RD)) / len(nz)), 2);
                        myVal = pow(
                            math.log10(float(len(r_harlocs)) / len(nz)), 2)
                        """
                        try:
                            myVal = pow(math.log10(float(len(r_harlocs)) / len(nz)), 2);
                        except:
                            print("Error: len=%d len(nz)=%d nz.size=%d" % \
                                            (len(r_harlocs), len(nz), nz.size));
                            common.DebugPrintErrorTrace();
                        """

                        #if False:
                        if common.MY_DEBUG_STDOUT:
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                              "len(RD) = %d" % len(RD));
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                              "len(r_harlocs) = %d" % len(r_harlocs))
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                              "len(nz) = %d" % len(nz))
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                               "myVal = %.5f" % myVal)

                        # PREVIOUSLY
                        votes[nz, tol_i] = votes[nz, tol_i] + myVal
                        #   votes(nz)=votes(nz)+log10(length(RD)/(length(nz)));
                        #   votes(nz)=votes(nz)+1;

        if common.MY_DEBUG_STDOUT and DBGPRINT:
            """
            common.DebugPrint("multiscale_quad_retrieval(): " \
                    "Votes_space.shape = %s" % (str(Votes_space.shape)));
            common.DebugPrint("multiscale_quad_retrieval(): " \
                    "votes.shape = %s" % (str(votes.shape)));
            """

            print("multiscale_quad_retrieval(): " \
                              "votes.shape = %s" % (str(votes.shape)))
            if (np.abs(votes) < 1.0e-10).all():
                print( \
                      "multiscale_quad_retrieval(): votes = 0 (all zeros)")
            else:
                print("multiscale_quad_retrieval(): " \
                              "votes = %s" % (str(votes)))

        #Votes_space(:,q)=votes;
        # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
        #Votes_space[:, queryFrame - 1] = votes;
        # Note: since votes is basically a 1-D vector, we don't use the Fortran order
        Votes_space[:, queryFrame] = np.ravel(votes)
        # order="F");

        if cropflag == 0:
            HH[:, queryFrame] = 1
        else:
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(RD), st_threshold, cropflag);
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(r_harlocs), st_threshold, cropflag)

    if common.MY_DEBUG_STDOUT and DBGPRINT:
        print("multiscale_quad_retrieval(scale_index=%d): " \
                            "Votes_space =\n%s" % (scale_index, str(Votes_space)))

    try:
        np.savez_compressed("Votes_space%d" % scale_index, Votes_space)
        np.savez_compressed("HH%d" % scale_index, HH)
    except:
        common.DebugPrintErrorTrace()

    t2 = float(cv2.getTickCount())
    myTime = (t2 - t1) / cv2.getTickFrequency()
    print("multiscale_quad_retrieval() took %.6f [sec]" % myTime)
    """
    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "%d corresponding frames retrieved in %.6f secs" % \
                        (len(q_harlocs), myTime));
    """

    return Votes_space, HH
コード例 #5
0
def IterationStandaloneMQR(queryFrame):
    r_quadsTree = g.r_quadsTree;
    r_harlocs = g.r_harlocs;
    q_harlocs = g.q_harlocs;
    md_threshold = g.md_threshold;
    st_threshold = g.st_threshold;
    all_ori = g.all_ori;
    all_id = g.all_id;
    all_max = g.all_max;
    all_cen = g.all_cen;
    nos = g.nos;
    scale_index = g.scale_index;
    cropflag = g.cropflag;
    sequence = g.sequence;
    RD_start = g.RD_start;
    RD_end = g.RD_end;
    MAXDIS = g.MAXDIS;
    MAXORI = g.MAXORI;
    tolers = g.tolers;
    """
    common.DebugPrint( \
              "Entered IterationStandaloneMQR(): crossref=%s, captureQ=%s, "\
                        "captureR=%s, refined_crossref=%s, warp_p=%s, "
                        "x0=%s, y0=%s, start=%s, t=%d, iWhile=%d." % \
                    (str(crossref), str(captureQ), str(captureR), \
                         str(g.refined_crossref), str(g.warp_p), \
                         str(g.x0), str(g.y0), str(g.start), g.t, iWhile));
    common.DebugPrint("IterationStandalone(): id(g)=%s" % str(id(g)));
    """

    # tic

    """
    str1=['load ' q_path QD(q).name]
    eval(str1)
    """

    """
    We make pp reference the desired multiharloc list for the query video
        frame queryFrame
    """
    pp = q_harlocs[queryFrame];
    #pp = np.array(pp);

    #common.DebugPrint("multiscale_quad_retrieval(): pp = %s" % str(pp));

    """
    Alex: for the query frame queryFrame we retrieve, for scale scale_index, the
        harris features in var points.
      Then we build the quads from points.
      Then for each quad (4 float values) we query the corresponding scale
        kd-tree, and we get the indices.
        Then we build the histogram and compute idf, ....!!!!

     Note: scale is 1 for original frame resolution and the higher
        we go we have lower image resolutions (we go higher in the
        Guassian pyramid I think).
    """
    #[qout,qcen,qmaxdis,qori]=findquads(pp(pp(:,3)==scale_index,1:2),md_threshold,0);
    points = pp[pp[:, 2] == scale_index, 0:2];
    qout, qcen, qmaxdis, qori = findquads.findquads(points, md_threshold, 0);

    common.DebugPrint("multiscale_quad_retrieval(): queryFrame = %d, " \
                        "qout.shape = %s" % (queryFrame, str(qout.shape)));

    # disp([num2str(q) ' of ' num2str(length(QD)) ' -> ' num2str(size(qout,1)) ' quads'])

    #space_xy=zeros(size(qcen,1),2*length(RD))+nan;
    #space_xy = np.zeros( (qcen.shape[0], 2 * len(RD)) ) + np.nan;
    space_xy = np.zeros( (qcen.shape[0], 2 * len(r_harlocs)) ) + np.nan;

    #     votes=zeros(length(RD),1)
    #votes=zeros(length(RD),length(tolers));
    #votes = np.zeros( (len(RD), 1) );
    votes = np.zeros( (len(r_harlocs), 1) );

    #nep = np.array([]);
    #m_points = np.array([]);

    assert isinstance(tolers, float);

    """
    We substitute queryFrameQuad - 1 with queryFrameQuad, since we want
        to number arrays from 0 (not from 1 like in Matlab).
    """
    #for queryFrameQuad in range(1, qout.shape[0] + 1):
    for queryFrameQuad in range(qout.shape[0]):
        """
        Matlab's polymorphism is really bugging here: although it's
            normally a float, tolers is considered to be a size 1 vector...
            so len(tolers) == 1
        """
        #for tol_i in range(1, len(tolers) + 1):
        #    tol = tolers[tol_i - 1]
        """
        We substitute tol_i - 1 with tol, since we want
            to number arrays from 0 (not from 1 like in Matlab).
        """
        #for tol_i in range(1, 1 + 1):
        for tol_i in range(1):
            tol = tolers;

            #common.DebugPrint("multiscale_quad_retrieval(): qout[i - 1, :] = %s" % str(qout[i - 1, :]))

            #% default for first PAMI with tol= 0.1 approximately

            # NOTE: SciPy's KDTree finds a few more results, in some cases,
            #    than the Matlab code from Evangelidis.

            #idx, di = kdtree_ball_query(tree, qout(i, :), tol)
            #idx, distKD = kdtree_ball_query(tree, qout[i - 1, :], tol)
            #idx, di = tree.query(x=xQuery, k=4)
            #resPoints = [data[i] for i in resBallIndices]
            # tol is a scalar representing the radius of the ball
            if config.KDTREE_IMPLEMENTATION == 0:
                idx = r_quadsTree.query_ball_point(qout[queryFrameQuad, :], tol);
            elif config.KDTREE_IMPLEMENTATION == 1:
                #pt = qout[queryFrameQuad - 1, :].astype(np.float32);
                pt = qout[queryFrameQuad, :];
                pt = np.array([[pt[0], pt[1], pt[2], pt[3]]], dtype=np.float32);
                retval, idx, dists = r_quadsTree.radiusSearch( \
                                            query=pt, \
                                            radius=(tol**2), \
                                            maxResults=NUM_MAX_ELEMS, \
                                            params=search_params);
                if common.MY_DEBUG_STDOUT and DBGPRINT:
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "retval (number NNs) = %s" % str(retval));
                    """
                    common.DebugPrint( \
                        "multiscale_quad_retrieval(): radiusSearch's retval " \
                        "(at queryFrame=%d, queryFrameQuad=%d) is %d\n" % (queryFrame, queryFrameQuad, retval));
                idx = idx[0];
                dists = dists[0];
                idx = idx[: retval];
                dists = dists[: retval];

            if common.MY_DEBUG_STDOUT and DBGPRINT:
                print("multiscale_quad_retrieval(): " \
                        "qout[queryFrameQuad, :] = %s" % str(qout[queryFrameQuad, :]));
                print("multiscale_quad_retrieval(): " \
                                    "idx = %s" % str(idx));
                print("multiscale_quad_retrieval(): " \
                                    "tol = %s" % str(tol));
                if config.KDTREE_IMPLEMENTATION == 0:
                    print("multiscale_quad_retrieval(): " \
                            "r_quadsTree.data[idx] = %s" % \
                            str(r_quadsTree.data[idx]));

            # We print the distances to the points returned in idx
            a = qout[queryFrameQuad, :];
            if False: #!!!! This is just for debugging purposes
                for myI, index in enumerate(idx):
                    b = r_quadsTree.data[index];
                    """
                    if False:
                        common.DebugPrint("multiscale_quad_retrieval(): distance to " \
                            "%d point (%s) inside ball = %.4f" % \
                            (myI, str(b), npla.norm(a - b)));
                    """
            idx = np.array(idx);


            #if False:
            if common.MY_DEBUG_STDOUT:
                common.DebugPrint("multiscale_quad_retrieval(): " \
                            "all_max.shape = %s" % str(all_max.shape));
                common.DebugPrint("multiscale_quad_retrieval(): " \
                            "qmaxdis.shape = %s" % str(qmaxdis.shape));
                common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qmaxdis = %s" % str(qmaxdis));
                common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qori.shape = %s" % str(qori.shape));
                common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qori = %s" % str(qori));

            #dis_idx=abs(qmaxdis(i)-all_max(idx))<MAXDIS;
            if len(idx) == 0:
                # NOT A GOOD IDEA: continue;
                #idx = np.array([]);
                dis_idx = np.array([]);
                ori_idx = np.array([]);
            else:
                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "queryFrameQuad = %s" % str(queryFrameQuad));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "all_max[idx] = %s" % str(all_max[idx]));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "qmaxdis[queryFrameQuad] = %s" % str(qmaxdis[queryFrameQuad]));

                dis_idx = np.abs(qmaxdis[queryFrameQuad] - all_max[idx]) < MAXDIS;

                #if False:
                if common.MY_DEBUG_STDOUT:
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "idx = %s" % str(idx));
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "dis_idx = %s" % str(dis_idx));

                #idx=idx(dis_idx)
                idx = idx[dis_idx];

                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "idx (after idx = idx[dis_idx]) = %s" % str(idx));

                #ori_idx=abs(qori(i)-all_ori(idx))<MAXORI;
                ori_idx = np.abs(qori[queryFrameQuad] - all_ori[idx]) < MAXORI;

                #if False:
                if common.MY_DEBUG_STDOUT:
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "all_ori = %s" % str(all_ori));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                            "qori[queryFrameQuad] = %s" % str(qori[queryFrameQuad]));

                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "ori_idx = %s" % str(ori_idx));

                #idx=idx(ori_idx);
                idx = idx[ori_idx];


            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            #% spatio-temporal consistency
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################
            # IMPORTANT ###################################################

            #if numel(idx) > 0:
            if idx.size > 0:
                # Normally cropflag == 0
                if cropflag == 0:
                    dy = qcen[queryFrameQuad, 0] - all_cen[idx, 0];
                    dx = qcen[queryFrameQuad, 1] - all_cen[idx, 1];

                    #D=dy.^2+dx.^2;
                    D = dy**2 + dx**2;

                    co_idx = D < pow(st_threshold, 2);

                    idx = idx[co_idx];
                else:
                    """
                    We substitute iii - 1 with iii, since we want
                        to number arrays from 0 (not from 1 like in Matlab).
                    """
                    #for iii in range(1, len(idx) + 1):
                    for iii in range(len(idx)):
                        #space_xy(i,(all_id(idx(iii))-RD_start)*2+1:(all_id(idx(iii))-RD_start)*2+2) = all_cen(idx(iii),:)
                        space_xy[queryFrameQuad, \
                                (all_id[idx[iii]] - RD_start) * 2: (all_id[idx[iii] - 1] - RD_start) * 2 + 1] = \
                                all_cen[idx[iii], :]

                #hh=hist(all_id(idx),RD_start:RD_end);
                # It has to be an np.array because we multiply it with a scalar
                histoRange = np.array(range(RD_start, RD_end + 1));
                hh = Matlab.hist(x=all_id[idx], binCenters=histoRange);

                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "hh = %s" % (str(hh)));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "hh.shape = %s" % (str(hh.shape)));

                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "all_id = %s" % (str(all_id)));
                    """
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "all_id.shape = %s" % (str(all_id.shape)));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "idx = %s" % (str(idx)));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "idx.shape = %s" % (str(idx.shape)));

                # % nz can be computed more optimally
                #nz=find(hh~=0); # nz can be computed more optimally
                # np.nonzero() always returns a tuple, even if it contains 1 element since hh has only 1 dimension
                nz = np.nonzero(hh != 0)[0];
                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "nz = %s" % (str(nz)));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "nz.shape = %s" % (str(nz.shape)));

                #if numel(nz) > 0:
                if nz.size > 0:
                    #%%----text-retrieval-like
                    #votes(nz, tol_i) = votes(nz, tol_i) + log10(length(RD) / (length(nz)))^2 #Note: log10(a)^2 means (log10(a))^2 #PREVIOUSLY
                    #myVal = pow(math.log10(float(len(RD)) / len(nz)), 2);
                    myVal = pow(math.log10(float(len(r_harlocs)) / len(nz)), 2);

                    #if False:
                    if common.MY_DEBUG_STDOUT:
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "len(RD) = %d" % len(RD));
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "len(r_harlocs) = %d" % len(r_harlocs));
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "len(nz) = %d" % len(nz));
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "myVal = %.5f" % myVal);

                    # PREVIOUSLY
                    votes[nz, tol_i] = votes[nz, tol_i] + myVal;
                    #   votes(nz)=votes(nz)+log10(length(RD)/(length(nz)));
                    #   votes(nz)=votes(nz)+1;

    #if False:
    if common.MY_DEBUG_STDOUT:
        """
        common.DebugPrint("multiscale_quad_retrieval(): " \
                "Votes_space.shape = %s" % (str(Votes_space.shape)));
        common.DebugPrint("multiscale_quad_retrieval(): " \
                "votes.shape = %s" % (str(votes.shape)));
        """

        common.DebugPrint("multiscale_quad_retrieval(): " \
                            "votes.shape = %s" % (str(votes.shape)));
        common.DebugPrint("multiscale_quad_retrieval(): " \
                            "votes = %s" % (str(votes)));

    return (queryFrame, np.ravel(votes));

    # NOT performing these in each worker - the central dispatcher will do these
    if False:
        #Votes_space(:,q)=votes;
        # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
        #Votes_space[:, queryFrame - 1] = votes;
        Votes_space[:, queryFrame] = np.ravel(votes);

        if cropflag == 0:
            HH[:, queryFrame] = 1;
        else:
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(RD), st_threshold, cropflag);
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(r_harlocs), st_threshold, cropflag);
コード例 #6
0
def multiscale_quad_retrieval(r_quadsTree, r_harlocs, q_harlocs, md_threshold, st_threshold, \
            all_ori, all_id, all_max, all_cen, nos, scale_index, cropflag, \
            sequence):
    common.DebugPrint("Entered multiscale_quad_retrieval(): " \
                        "md_threshold = %s, st_threshold = %s." % \
                        (str(md_threshold), \
                        str(st_threshold)));

    assert len(r_harlocs) != 0;
    assert len(q_harlocs) != 0;

    try:
        Votes_space = np.load("Votes_space%d.npz" % scale_index)['arr_0'];
        HH = np.load("HH%d.npz" % scale_index)['arr_0'];
        return Votes_space, HH;
    except:
        common.DebugPrintErrorTrace();

    if common.MY_DEBUG_STDOUT and DBGPRINT:
        common.DebugPrint("multiscale_quad_retrieval(): r_quadsTree = %s" % \
                            str(r_quadsTree));

        common.DebugPrint("multiscale_quad_retrieval(): len(r_harlocs) = %d" % len(r_harlocs));
        common.DebugPrint("multiscale_quad_retrieval(): r_harlocs = %s" % str(r_harlocs));

        common.DebugPrint("multiscale_quad_retrieval(): q_harlocs = %s" % str(q_harlocs));
        common.DebugPrint("multiscale_quad_retrieval(): md_threshold = %s" % str(md_threshold));
        print("multiscale_quad_retrieval(): st_threshold = %s" % str(st_threshold));
        #common.DebugPrint("multiscale_quad_retrieval(): all_ori, all_id, all_max, all_cen, nos, scale_index, cropflag = %s" % str(all_ori, all_id, all_max, all_cen, nos, scale_index, cropflag));
        common.DebugPrint("multiscale_quad_retrieval(): all_id = %s" % str(all_id));
        common.DebugPrint("multiscale_quad_retrieval(): all_id.shape = %s" % (str(all_id.shape)));
        #common.DebugPrint("multiscale_quad_retrieval(): all_max, all_cen, nos, scale_index, cropflag = %s" % str(all_max, all_cen, nos, scale_index, cropflag));
        #common.DebugPrint("multiscale_quad_retrieval(): all_max = %s" % str(all_max));
        #common.DebugPrint("multiscale_quad_retrieval(): all_cen, nos, scale_index, cropflag = %s" % str(all_cen, nos, scale_index, cropflag));
        common.DebugPrint("multiscale_quad_retrieval(): sequence = %s" % str(sequence));
        print("multiscale_quad_retrieval(): cropflag = %s" % str(cropflag));

    t1 = float(cv2.getTickCount());

    if scale_index > nos:
        assert scale_index <= nos;
        #error('Wrong scale index or number-of-scales');

    #QD = dir([q_path "multiharlocs*.mat"])
    #QD = [q_path + "multiharlocs*.mat"]
    #QD = q_harlocs;

    #RD = dir([r_path "multiharlocs*.mat"])
    #RD = [r_path + "multiharlocs*.mat"]
    #RD = r_harlocs;

    #TODO: take out RD_start
    #RD_start = str2num(RD(1).name(end - 9 : end - 4))
    #RD_start = int(RD[0][-9 : -4])
    RD_start = 0;

    #RD_end = str2num(RD(end).name(end - 9 : end - 4))
    #RD_end = int(RD[-1][-9 : -4])
    #RD_end = len(RD) - 1;
    RD_end = len(r_harlocs) - 1;

    if False: # n_d not used anywhere
        #n_d = hist(all_id, RD_start : RD_end)
        #n_d = hist[all_id, RD_start : RD_end]
        n_d = Matlab.hist(x=all_id, \
                      binCenters=np.array(range(RD_start, RD_end + 1)) );

        #cross_indices = np.zeros( (len(QD), 2) );
        cross_indices = np.zeros( (len(q_harlocs), 2) );

    j = 1;

    #tic
    #ORI = np.array([]); # ORI NOT used anywhere

    """
    Inspired from
      https://stackoverflow.com/questions/17559140/matlab-twice-as-fast-as-numpy
        BUT doesn't help in this case:
    Votes_space = np.asfortranarray(np.zeros( (len(RD), len(QD)) ));
    """
    #Votes_space = np.zeros( (len(RD), len(QD)) );
    Votes_space = np.zeros( (len(r_harlocs), len(q_harlocs)) );

    # Make a distinct copy of HH from Votes_space...
    #HH = Votes_space.copy().astype(np.int16); #Votes_space + 0;
    #HH = np.zeros((len(RD), len(QD)), dtype=np.int8);
    HH = np.zeros((len(r_harlocs), len(q_harlocs)), dtype=np.int8); #!!!!TODO use MAYBE even np.bool - OR take it out

    #common.DebugPrint("multiscale_quad_retrieval(): Votes_space = %s,\n       HH = %s" % (str(Votes_space), str(HH)))

    tolers = 0.1 - float(scale_index) / 100.0; # it helps to make more strict the threshold as the scale goes up
    # tolers = 0.15 - float(scale_index) / 100.0;

    MAXDIS = 3 + scale_index;
    MAXORI = 0.25;


    """
    !!!!TODO TODO: I am using multiprocessing.Poll and return votes;
      the dispatcher assembles the results,
        but the results are NOT the same with the serial case - although they
           look pretty decent, but they seem to be suboptimal - dp_Alex returns
             suboptimal cost path for USE_MULTITHREADING == True instead of
             False.
             (Note: running under the same preconditions
                 multiscale_quad_retrieval I got the same results in dp_Alex().
    """
    if False: #config.USE_MULTITHREADING == True:
        global g;
        g.r_quadsTree = r_quadsTree;
        g.r_harlocs = r_harlocs;
        g.q_harlocs = q_harlocs;
        g.md_threshold = md_threshold;
        g.st_threshold = st_threshold;
        g.all_ori = all_ori;
        g.all_id = all_id;
        g.all_max = all_max;
        g.all_cen = all_cen;
        g.nos = nos;
        g.scale_index = scale_index;
        g.cropflag = cropflag;
        g.sequence = sequence;
        g.RD_start = RD_start;
        g.RD_end = RD_end;
        g.MAXDIS = MAXDIS;
        g.MAXORI = MAXORI;
        g.tolers = tolers;

        """
        Start worker processes to use on multi-core processor (able to run
           in parallel - no GIL issue if each core has it's own VM)
        """
        pool = multiprocessing.Pool(processes=config.numProcesses);
        print("multiscale_quad_retrieval(): Spawned a pool of %d workers" % \
                                config.numProcesses);

        listParams = range(0, len(q_harlocs)); #!!!!TODO: use counterStep, config.initFrame[indexVideo]

        #res = pool.map(IterationStandaloneMQR, listParams);
        # See https://docs.python.org/2/library/multiprocessing.html#module-multiprocessing.pool
        res = pool.map(func=IterationStandaloneMQR, iterable=listParams, \
                        chunksize=1);

        print("Pool.map returns %s" % str(res)); #x0.size + 1

        """
        From https://medium.com/building-things-on-the-internet/40e9b2b36148
            close the pool and wait for the work to finish
        """
        pool.close();
        pool.join();

        # Doing the "reduce" phase after the workers have finished :)
        assert len(res) == len(q_harlocs);
        for queryFrame, resE in enumerate(res):
            resEIndex = resE[0];
            resE = resE[1];
            assert resEIndex == queryFrame;
            # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
            #Votes_space[:, queryFrame - 1] = votes;
            Votes_space[:, queryFrame] = resE;

        for queryFrame in range(len(q_harlocs)):
            if cropflag == 0:
                HH[:, queryFrame] = 1;
            else:
                """
                HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                            qcen, len(RD), st_threshold, cropflag);
                """
                HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                            qcen, len(r_harlocs), st_threshold, cropflag);

        try:
            np.savez_compressed("Votes_space%d" % scale_index, Votes_space);
            np.savez_compressed("HH%d" % scale_index, HH);
        except:
            common.DebugPrintErrorTrace();

        return Votes_space, HH;



    """
    We substitute q - 1 with q, since we want
      to number arrays from 0 (not from 1 like in Matlab).
    """
    #for q=1:length(QD)
    #for q in range(1, len(QD) + 1):
    #for queryFrame in range(len(QD)):
    for queryFrame in range(len(q_harlocs)):
        common.DebugPrint("multiscale_quad_retrieval(): Starting iteration queryFrame = %d" % queryFrame);
        # tic

        """
        str1=['load ' q_path QD(q).name]
        eval(str1)
        """

        """
        We make pp reference the desired multiharloc list for the query video
           frame queryFrame
        """
        pp = q_harlocs[queryFrame];
        #pp = np.array(pp);

        #common.DebugPrint("multiscale_quad_retrieval(): pp = %s" % str(pp));

        #[qout,qcen,qmaxdis,qori]=findquads(pp(pp(:,3)==scale_index,1:2),md_threshold,0);
        points = pp[pp[:, 2] == scale_index, 0:2];
        qout, qcen, qmaxdis, qori = findquads.findquads(points, md_threshold, 0);

        if common.MY_DEBUG_STDOUT and DBGPRINT:
            print("multiscale_quad_retrieval(): queryFrame = %d, " \
                          "qout.shape (number of quads for query frame queryFrame) = %s" % \
                                                 (queryFrame, str(qout.shape)));

        # disp([num2str(q) ' of ' num2str(length(QD)) ' -> ' num2str(size(qout,1)) ' quads'])

        #space_xy=zeros(size(qcen,1),2*length(RD))+nan;
        #space_xy = np.zeros( (qcen.shape[0], 2 * len(RD)) ) + np.nan;
        space_xy = np.zeros( (qcen.shape[0], 2 * len(r_harlocs)) ) + np.nan;

        #     votes=zeros(length(RD),1)
        #votes=zeros(length(RD),length(tolers));
        #votes = np.zeros( (len(RD), 1) );
        votes = np.zeros( (len(r_harlocs), 1) );

        #nep = np.array([]);
        #m_points = np.array([]);

        assert isinstance(tolers, float);

        if common.MY_DEBUG_STDOUT:
            common.DebugPrint("multiscale_quad_retrieval(): quads of query frame %d are: " % queryFrame);
            common.DebugPrint("  qout = %s" % str(qout));

        """
        Alex: for each quad (4 floats) of the query frame from Harris feature of scale scale_index
          Note: all_id stores the reference frame id for each quad descriptor.
        """
        """
        We substitute queryFrameQuad - 1 with queryFrameQuad, since we want
            to number arrays from 0 (not from 1 like in Matlab).
        """
        #for queryFrameQuad in range(1, qout.shape[0] + 1):
        for queryFrameQuad in range(qout.shape[0]):
            common.DebugPrint("multiscale_quad_retrieval(): Starting iteration queryFrameQuad = %d" % queryFrameQuad);
            """
            Matlab's polymorphism is really bugging here: although it's
                normally a float, tolers is considered to be a size 1 vector...
                so len(tolers) == 1
            """
            #for tol_i in range(1, len(tolers) + 1):
            #    tol = tolers[tol_i - 1]
            """
            We substitute tol_i - 1 with tol, since we want
                to number arrays from 0 (not from 1 like in Matlab).
            """
            #for tol_i in range(1, 1 + 1):
            for tol_i in range(1):
                tol = tolers;

                """
                # TODO: done below - take out this dbg print
                if DBGPRINT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "qout[queryFrameQuad, :] = %s" % \
                                        str(qout[queryFrameQuad, :]))
                """

                #% default for first PAMI with tol= 0.1 approximately

                # NOTE: SciPy's KDTree finds a few more results, in some cases,
                #    than the Matlab code from Evangelidis.

                #idx, di = kdtree_ball_query(tree, qout(i, :), tol)
                #idx, distKD = kdtree_ball_query(tree, qout[i - 1, :], tol)
                #idx, di = tree.query(x=xQuery, k=4)
                #resPoints = [data[i] for i in resBallIndices]
                # tol is a scalar representing the radius of the ball
                if config.KDTREE_IMPLEMENTATION == 0:
                    idx = r_quadsTree.query_ball_point(qout[queryFrameQuad, :], tol);
                elif config.KDTREE_IMPLEMENTATION == 1:
                    #pt = qout[queryFrameQuad - 1, :].astype(np.float32);
                    pt = qout[queryFrameQuad, :];
                    pt = np.array([[pt[0], pt[1], pt[2], pt[3]]], dtype=np.float32);
                    retval, idx, dists = r_quadsTree.radiusSearch( \
                                                query=pt, \
                                                radius=(tol**2), \
                                                maxResults=NUM_MAX_ELEMS, \
                                                params=search_params);
                    if common.MY_DEBUG_STDOUT and DBGPRINT:
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                        "retval (number NNs) = %s" % str(retval));
                        """
                        common.DebugPrint( \
                            "multiscale_quad_retrieval(): radiusSearch's retval " \
                            "(at queryFrame=%d, queryFrameQuad=%d) is %d" % (queryFrame, queryFrameQuad, retval));

                    idx = idx[0];
                    dists = dists[0];
                    """
                    Note: retval is the number of neighbors returned from the radiusSearch().
                      But the idx and the dists can have more elements than the returned retval.
                    """
                    idx = idx[: retval];
                    dists = dists[: retval];

                if common.MY_DEBUG_STDOUT and DBGPRINT:
                    print("multiscale_quad_retrieval(): " \
                            "qout[queryFrameQuad, :] = %s" % str(qout[queryFrameQuad, :]));
                    print("multiscale_quad_retrieval(): " \
                                      "idx = %s" % str(idx));
                    print("multiscale_quad_retrieval(): " \
                                      "dists = %s" % str(dists));
                    print("multiscale_quad_retrieval(): " \
                                      "tol = %s" % str(tol));
                    if config.KDTREE_IMPLEMENTATION == 0:
                        print("multiscale_quad_retrieval(): " \
                                "r_quadsTree.data[idx] = %s" % \
                                str(r_quadsTree.data[idx]));

                # We print the distances to the points returned in idx
                if common.MY_DEBUG_STDOUT and DBGPRINT: # This is just for debugging purposes
                    a = qout[queryFrameQuad, :];
                    if config.KDTREE_IMPLEMENTATION == 0:
                        for myI, index in enumerate(idx):
                            b = r_quadsTree.data[index];
                            """
                            if False:
                                common.DebugPrint("multiscale_quad_retrieval(): distance to " \
                                    "%d point (%s) inside ball = %.4f" % \
                                    (myI, str(b), npla.norm(a - b)));
                            """
                    else:
                        pass;
                idx = np.array(idx);

                #if False:
                if common.MY_DEBUG_STDOUT:
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "all_max.shape = %s" % str(all_max.shape));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                "qmaxdis.shape = %s" % str(qmaxdis.shape));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                      "qmaxdis = %s" % str(qmaxdis));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                      "qori.shape = %s" % str(qori.shape));
                    common.DebugPrint("multiscale_quad_retrieval(): " \
                                      "qori = %s" % str(qori));

                #dis_idx=abs(qmaxdis(i)-all_max(idx))<MAXDIS;
                if len(idx) == 0:
                    # NOT A GOOD IDEA: continue;
                    #idx = np.array([]);
                    dis_idx = np.array([]);
                    ori_idx = np.array([]);
                else:
                    if common.MY_DEBUG_STDOUT and DBGPRINT:
                        print("multiscale_quad_retrieval(): " \
                                            "queryFrameQuad = %s" % str(queryFrameQuad));
                        print("multiscale_quad_retrieval(): " \
                            "all_max[idx] = %s" % str(all_max[idx]));
                        print("multiscale_quad_retrieval(): " \
                            "qmaxdis[queryFrameQuad] = %s" % str(qmaxdis[queryFrameQuad]));

                    if USE_GPS_COORDINATES:
                        # We look only at a part of the reference video
                        """
                        Since in some cases the video temporal alignment is
                            difficult to do due to similar portions in the
                            trajectory (see the drone videos, clip 3_some_lake)
                            we "guide" the temporal alignment by restricting
                            the reference frame search space - this is useful
                            when we have the geolocation (GPS) coordinate for
                            each frame.
                        """
                        if common.MY_DEBUG_STDOUT and DBGPRINT:
                            print("multiscale_quad_retrieval(): " \
                                "all_id = %s" % str(all_id));

                        if True:
                            #assert (all_id.ndim == 2) and (all_id.shape[1] == 1);
                            if all_id.ndim == 2:
                                #!!!!TODO TODO: put this at the beginning of the function
                                assert all_id.shape[1] == 1;
                                """
                                We flatten the array all_id
                                  Note: We don't use order="F" since it's
                                        basically 1-D array
                                """
                                all_id = np.ravel(all_id);

                        #!!!!TODO: put start and end frame in config - or compute it from geolocation
                        sub_idx = np.logical_and( (all_id[idx] >= 2030 - 928), \
                                                    (all_id[idx] <= 2400 - 928) );
                        idx = idx[sub_idx];

                        if common.MY_DEBUG_STDOUT and DBGPRINT:
                            print("multiscale_quad_retrieval(): " \
                                "all_id = %s" % str(all_id));
                            print("multiscale_quad_retrieval(): " \
                                "sub_idx = %s" % str(sub_idx));
                            print("multiscale_quad_retrieval(): " \
                                "idx = %s" % str(idx));

                    if FILTER:
                        dis_idx = np.abs(qmaxdis[queryFrameQuad] - all_max[idx]) < MAXDIS;

                        #if False:
                        if common.MY_DEBUG_STDOUT:
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                                "idx = %s" % str(idx));
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "dis_idx = %s" % str(dis_idx));

                        #idx=idx(dis_idx)
                        idx = idx[dis_idx];

                    #if False:
                    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                            "idx (after idx = idx[dis_idx]) = %s" % str(idx));

                    if FILTER:
                        #ori_idx=abs(qori(i)-all_ori(idx))<MAXORI;
                        ori_idx = np.abs(qori[queryFrameQuad] - all_ori[idx]) < MAXORI;

                        #if False:
		        if common.MY_DEBUG_STDOUT:
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                                    "all_ori = %s" % str(all_ori));
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "qori[queryFrameQuad] = %s" % str(qori[queryFrameQuad]));

                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "ori_idx = %s" % str(ori_idx));

                        #idx=idx(ori_idx);
                        idx = idx[ori_idx];


                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                #% spatio-temporal consistency
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################
                # IMPORTANT ###################################################

                #if numel(idx) > 0:
                if idx.size > 0:
                    if cropflag == 0:
                        if FILTER:
                            """
                            Alex: this is a simple procedure of eliminating False
                            Positive (FP) matches, as presented in Section 4.2 of
                            TPAMI 2013 paper.
                            Basically it filters out quad matches that have
                            centroids st_threshold away from the query quad.
                            Note: all_cen are the controids of all reference
                                quads.
                            """
                            dy = qcen[queryFrameQuad, 0] - all_cen[idx, 0];
                            dx = qcen[queryFrameQuad, 1] - all_cen[idx, 1];

                            #D=dy.^2+dx.^2;
                            D = dy**2 + dx**2;

                            co_idx = D < pow(st_threshold, 2);

                            idx = idx[co_idx];
                    else:
                        """
                        We substitute iii - 1 with iii, since we want
                            to number arrays from 0 (not from 1 like in Matlab).
                        """
                        #for iii in range(1, len(idx) + 1):
                        for iii in range(len(idx)):
                            #space_xy(i,(all_id(idx(iii))-RD_start)*2+1:(all_id(idx(iii))-RD_start)*2+2) = all_cen(idx(iii),:)
                            space_xy[queryFrameQuad, \
                                    (all_id[idx[iii]] - RD_start) * 2: (all_id[idx[iii] - 1] - RD_start) * 2 + 1] = \
                                    all_cen[idx[iii], :];

                    #hh=hist(all_id(idx),RD_start:RD_end);
                    # It has to be an np.array because we multiply it with a scalar
                    histoRange = np.array(range(RD_start, RD_end + 1));
                    hh = Matlab.hist(x=all_id[idx], binCenters=histoRange);

                    #if False:
                    #if True:
		    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "hh = %s" % (str(hh)));
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "hh.shape = %s" % (str(hh.shape)));

                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                            "all_id = %s" % (str(all_id)));
                        """
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "all_id.shape = %s" % (str(all_id.shape)));
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "idx = %s" % (str(idx)));
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                    "idx.shape = %s" % (str(idx.shape)));

                    # % nz can be computed more optimally
                    #nz=find(hh~=0); # nz can be computed more optimally
                    # np.nonzero() always returns a tuple, even if it contains 1 element since hh has only 1 dimension
                    nz = np.nonzero(hh != 0)[0];
                    #if False:
	    	    if common.MY_DEBUG_STDOUT:
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                          "nz = %s" % (str(nz)));
                        common.DebugPrint("multiscale_quad_retrieval(): " \
                                          "nz.shape = %s" % (str(nz.shape)));

                    #if numel(nz) > 0
                    if nz.size > 0:
                        #%%----text-retrieval-like
                        #votes(nz, tol_i) = votes(nz, tol_i) + log10(length(RD) / (length(nz)))^2 #PREVIOUSLY
                        #myVal = pow(math.log10(float(len(RD)) / len(nz)), 2);
                        myVal = pow(math.log10(float(len(r_harlocs)) / len(nz)), 2);
                        """
                        try:
                            myVal = pow(math.log10(float(len(r_harlocs)) / len(nz)), 2);
                        except:
                            print("Error: len=%d len(nz)=%d nz.size=%d" % \
                                            (len(r_harlocs), len(nz), nz.size));
                            common.DebugPrintErrorTrace();
                        """

                        #if False:
		        if common.MY_DEBUG_STDOUT:
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                              "len(RD) = %d" % len(RD));
                            """
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                              "len(r_harlocs) = %d" % len(r_harlocs));
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                              "len(nz) = %d" % len(nz));
                            common.DebugPrint("multiscale_quad_retrieval(): " \
                                               "myVal = %.5f" % myVal);

                        # PREVIOUSLY
                        votes[nz, tol_i] = votes[nz, tol_i] + myVal;
                        #   votes(nz)=votes(nz)+log10(length(RD)/(length(nz)));
                        #   votes(nz)=votes(nz)+1;

        if common.MY_DEBUG_STDOUT and DBGPRINT:
            """
            common.DebugPrint("multiscale_quad_retrieval(): " \
                    "Votes_space.shape = %s" % (str(Votes_space.shape)));
            common.DebugPrint("multiscale_quad_retrieval(): " \
                    "votes.shape = %s" % (str(votes.shape)));
            """

            print("multiscale_quad_retrieval(): " \
                              "votes.shape = %s" % (str(votes.shape)));
            if (np.abs(votes) < 1.0e-10).all():
                print( \
                      "multiscale_quad_retrieval(): votes = 0 (all zeros)");
            else:
                print("multiscale_quad_retrieval(): " \
                              "votes = %s" % (str(votes)));

        #Votes_space(:,q)=votes;
        # Gives: "ValueError: output operand requires a reduction, but reduction is not enabled"
        #Votes_space[:, queryFrame - 1] = votes;
        # Note: since votes is basically a 1-D vector, we don't use the Fortran order
        Votes_space[:, queryFrame] = np.ravel(votes); # order="F");


        if cropflag == 0:
            HH[:, queryFrame] = 1;
        else:
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(RD), st_threshold, cropflag);
            """
            HH[:, queryFrame] = spatial_consistency.spatial_consistency(space_xy, \
                                        qcen, len(r_harlocs), st_threshold, cropflag);


    if common.MY_DEBUG_STDOUT and DBGPRINT:
        print("multiscale_quad_retrieval(scale_index=%d): " \
                            "Votes_space =\n%s" % (scale_index, str(Votes_space)));

    try:
        np.savez_compressed("Votes_space%d" % scale_index, Votes_space);
        np.savez_compressed("HH%d" % scale_index, HH);
    except:
        common.DebugPrintErrorTrace();

    t2 = float(cv2.getTickCount());
    myTime = (t2 - t1) / cv2.getTickFrequency();
    print("multiscale_quad_retrieval() took %.6f [sec]" % myTime);
    """
    common.DebugPrint("multiscale_quad_retrieval(): " \
                        "%d corresponding frames retrieved in %.6f secs" % \
                        (len(q_harlocs), myTime));
    """

    return Votes_space, HH;