コード例 #1
0
def convert_center(image):
    """
    Centers image.
    """
    OSU.system_command("convert %s -background none -gravity Center %s.temp" %
                       (image, image))
    os.rename(image + ".temp", image)
コード例 #2
0
def write_R2D2_output_to_files(reactivities_prefix, R2D2_pairs, R2D2_consensus,
                               R2D2_consensus_ct, react_rhos, crystals_mat,
                               crystals_ctfile, crystals_ct, cryst_seq):
    # Write out results of R2D2 iterations
    with open("%s_R2D2_pairs.txt" % (reactivities_prefix), "w") as f:
        f.write("\n".join([
            "\t".join([str(bp) for bp in row]) for row in R2D2_pairs.tolist()
        ]) + "\n")
    with open("%s_R2D2_consensus.txt" % (reactivities_prefix), "w") as f:
        f.write("\n".join([
            "\t".join([str(bp) for bp in row])
            for row in R2D2_consensus.tolist()
        ]) + "\n")
    with open("%s_R2D2_consensus.stats" % (reactivities_prefix), "w") as f:
        f.write(
            str(
                SU.calc_benchmark_statistics_matrix(R2D2_consensus,
                                                    crystals_mat)))
    write_reactivities_in_ct(
        SU.binary_mat_to_binary_ct(R2D2_consensus), react_rhos,
        reactivities_prefix + "_R2D2_consensus_ct_react.txt")
    SU.ct_list_to_file(R2D2_consensus_ct, cryst_seq,
                       "%s_R2D2_consensus.ct" % (reactivities_prefix))
    SU.runRNAstructure_CircleCompare(
        "%s_R2D2_consensus.ct" % (reactivities_prefix), crystals_ctfile,
        "%s_R2D2_consensus.ps" % (reactivities_prefix))
    OSU.system_command("convert %s_R2D2_consensus.ps %s_R2D2_consensus.jpg" %
                       (reactivities_prefix, reactivities_prefix))
    write_reactivities_in_ct(crystals_ct, react_rhos,
                             reactivities_prefix + "_crystal_ct_react.txt")
コード例 #3
0
def run_Fold(seqfile,
             reactivities_prefix,
             react_rhos,
             num_proc,
             crystals_mat,
             crystals_ctfile,
             output_suffix,
             shape_direct=False,
             shape_slope=1.1,
             shape_intercept=-0.3):
    """
    RNAstructure-Fold process
    Will handle both SHAPE-directed and not SHAPE-directed
    """
    if lock is not None:
        lock.acquire()
    if shape_direct:
        SU.runRNAstructure_fold(seqfile,
                                "%s_%s.ct" %
                                (reactivities_prefix, output_suffix),
                                shapefile=reactivities_prefix + ".rho",
                                p=num_proc,
                                shape_intercept=shape_intercept,
                                shape_slope=shape_slope)
    else:
        SU.runRNAstructure_fold(seqfile,
                                "%s_%s.ct" %
                                (reactivities_prefix, output_suffix),
                                p=num_proc,
                                shape_intercept=shape_intercept,
                                shape_slope=shape_slope)
    SU.runRNAstructure_CircleCompare(
        "%s_%s.ct" % (reactivities_prefix, output_suffix), crystals_ctfile,
        "%s_%s.ps" % (reactivities_prefix, output_suffix))
    if lock is not None:
        lock.release()
    OSU.system_command("convert %s_%s.ps %s_%s.jpg" %
                       (reactivities_prefix, output_suffix,
                        reactivities_prefix, output_suffix))
    with open("%s_%s.stats" % (reactivities_prefix, output_suffix), "w") as f:
        fold_shape_ct = SU.get_ct_structs(
            "%s_%s.ct" % (reactivities_prefix, output_suffix))[0]
        fold_shape_react_mat = SU.ct_struct_to_binary_mat(fold_shape_ct)
        f.write(
            str(
                SU.calc_benchmark_statistics_matrix(fold_shape_react_mat,
                                                    crystals_mat)))
    write_reactivities_in_ct(
        fold_shape_ct, react_rhos,
        "%s_%s_ct_react.txt" % (reactivities_prefix, output_suffix))
    return fold_shape_ct, fold_shape_react_mat
コード例 #4
0
def convert_center_resize(image, res):
    """
    Centers image and resizes.
    """
    try:
        print "convert %s -alpha discrete -blur 0x1 -background none -gravity Center -extent %s %s.temp" % (
            image, res, image)
        OSU.system_command(
            "convert %s -alpha discrete -blur 0x1 -background none -gravity Center -extent %s %s.temp"
            % (image, res, image))
        os.rename(image + ".temp", image)
    except:
        print "convert %s -background none -gravity Center -extent %s %s.temp" % (
            image, res, image)
        OSU.system_command(
            "convert %s -background none -gravity Center -extent %s %s.temp" %
            (image, res, image))
        os.rename(image + ".temp", image)
コード例 #5
0
ファイル: PAU.py プロジェクト: jeanmarcbillod/R2D2
def wait_for_jcoll(jcoll, out_dir, wait=30):
    """
    Makes current process wait until no jobs are left in a job collection jcoll
    """
    wait_jlist = True
    while wait_jlist:
        jlist_jcoll = subprocess.Popen(
            ['/opt/voyager/nbs/bin/jlist', '-jcoll', jcoll],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE)
        out, err = jlist_jcoll.communicate()
        if "listempty" in out:
            wait_jlist = False
            break
        OSU.system_command(
            "echo \"waiting\n%s\n%s\n\" >> %sjcoll_waiting.txt" %
            (out, err, out_dir))
        time.sleep(wait)
    OSU.system_command("echo \"%s\n\" >> %sjcoll_waiting.txt" %
                       (time.localtime(), out_dir))
コード例 #6
0
ファイル: PCSU.py プロジェクト: jeanmarcbillod/R2D2
def generate_DG_output(cotrans, start=-1, end=-1):
    """
    Generate DG state plots and .dump file
    """
    if start == -1:
        start = sorted(cotrans.file_data)[0]
    if end == -1:
        end = sorted(cotrans.file_data)[-1]
    print "generate_DG_output: " + str(start) + " " + str(end)
    with open(cotrans.output_dir + "/DG_state_plot.dump", 'w') as dump:
        dump.write("nt\tDG\tmfe_flag\tbest_flag\tdistance\trc_flag\n")
        for length in sorted(cotrans.file_data):
            DG = cotrans.file_data[length]["free_energies"]
            min_DG = min(DG)
            best = cotrans.file_data[length][
                "min_dist_indices"]  # list of struct_num of min_distance

            line = [
                "\t".join([
                    str(length),  # nt
                    str(dg),  # DG
                    str(int(min_DG == dg)),  # mfe_flag
                    str(int(c in best)),  # best_flag
                    str(cotrans.file_data[length]["distances"][c]),  # distance
                    str(cotrans.file_data[length]["rc_flag"])
                ])  # rc_flag
                for dg, c in zip(DG, range(len(DG)))
            ]

            dump.write("\n".join(line))
            dump.write("\n")

    print "R < make_DG_state_plot.R --no-save --args %s/DG_state_plot.pdf %s/DG_state_plot.dump %s %s" % (
        cotrans.output_dir, cotrans.output_dir, start, end)
    OSU.system_command(
        "R < make_DG_state_plot.R --no-save --args %s/DG_state_plot.pdf %s/DG_state_plot.dump %s %s"
        % (cotrans.output_dir, cotrans.output_dir, start, end))
    return
コード例 #7
0
ファイル: PAU.py プロジェクト: jeanmarcbillod/R2D2
def output_train_model_stats(all_diffs_stats, min_dist_struct_indices, F_score,
                             crystals, reactivities_structs, output_dir):
    """
    Output summary of the benchmarking
    """
    # Pickle benchmark statistics and indices of structures with the minimum distance
    with open(output_dir + "/save_all_diffs_stats.p", "wb") as f:
        pickle.dump(all_diffs_stats, f)
    with open(output_dir + "/save_min_dist_struct_indices.p", "wb") as f:
        pickle.dump(min_dist_struct_indices, f)

    # Generate circle compare diagrams of minimum distance structures
    for k in sorted(reactivities_structs.keys()):
        ck = k.split('-')[
            0]  # corresponding crystal key from the reactivity key
        for mdi in min_dist_struct_indices[k]:
            outpre = output_dir + "/" + k + str(mdi)
            SU.ct_list_to_file(reactivities_structs[k][mdi][0],
                               crystals[ck][1], outpre + ".ct")
            SU.runRNAstructure_CircleCompare(outpre + ".ct", crystals[ck][3],
                                             outpre + ".ps")
            OSU.system_command("convert %s.ps %s.jpg" % (outpre, outpre))

    # Write out information on highest F score structures
    with open(output_dir + "/diffs_best_F.txt", 'w') as f:
        f.write("Max avg F score: " + str(F_score) + "\n")
        for k in sorted(reactivities_structs.keys()):
            reactivities_labels = [
                reactivities_structs[k][x][1]
                for x in min_dist_struct_indices[k]
            ]
            f.write("Methods: " + str(k) + "\t" + str(reactivities_labels) +
                    "\n")
        for k, stat_i in all_diffs_stats.items():
            f.write("Structure key: %s\n" % (k))
            f.write(str(stat_i) + "\n")
    return
コード例 #8
0
def generate_movie(regex, outfile, size="1200x2800"):
    """
    Generate a movie with images as described by regex.
    """
    if size != "":
        try:
            print "ffmpeg -r 1 -i " + regex + " -vcodec mpeg4 -b 800k -r 10 -s " + size + " -pix_fmt yuv420p " + outfile
            OSU.system_command("ffmpeg -r 1 -i " + regex +
                               " -vcodec mpeg4 -b 800k -r 10 -s " + size +
                               " -pix_fmt yuv420p " + outfile)
        except:
            print "ffmpeg -framerate 1 -i " + regex + " -c:v libx264 -r 10 -s " + size + " -pix_fmt yuv420p " + outfile
            OSU.system_command("ffmpeg -framerate 1 -i " + regex +
                               " -c:v libx264 -r 10 -s " + size +
                               " -pix_fmt yuv420p " + outfile)
    else:
        print "ffmpeg -framerate 1 -i " + regex + " -vcodec mpeg4 -b 800k -r 10 -pix_fmt yuv420p " + outfile
        OSU.system_command("ffmpeg -framerate 1 -i " + regex +
                           " -vcodec mpeg4 -b 800k -r 10 -pix_fmt yuv420p " +
                           outfile)
コード例 #9
0
ファイル: PAU.py プロジェクト: jeanmarcbillod/R2D2
def wait_jcoll_finish_any(jcoll, out_dir, max_jobs, wait=30):
    """
    Waits until any job in the job collection is done before returning the number of available jobs
    """
    wait_jlist = True
    while wait_jlist:
        num_running = count_jcoll_remaining(jcoll, out_dir)
        if num_running < max_jobs:
            wait_jlist = False
            OSU.system_command(
                "echo \"jobs available\n%s\n%s\n\" >> %sjcoll_waiting.txt" %
                (num_running, max_jobs, out_dir))
            break
        OSU.system_command(
            "echo \"waiting jobs available\n%s\n%s\n\" >> %sjcoll_waiting.txt"
            % (num_running, max_jobs, out_dir))
        time.sleep(wait)
    OSU.system_command("echo \"%s\n\" >> %sjcoll_waiting.txt" %
                       (time.localtime(), out_dir))
    return max_jobs - num_running
コード例 #10
0
def vertical_image_concat(outfile, images):
    """
    Vertical concatenate images to a new image file.
    """
    OSU.system_command("convert -append " + " ".join(images) + " " + outfile)
コード例 #11
0
ファイル: R2D2.py プロジェクト: jeanmarcbillod/R2D2
    def run(self):
        """
        The main routine of R2D2.
        Parses reactivities output from Spats and controls the calls to PCSU.
        """

        max_best_states = -1  # max number of best states across the lengths
        OSU.create_directory(self.output_dir)
        ct_dir = OSU.create_directory(
            self.output_dir + "/ct/"
        )  #JBL - extra // in this directory name  # AMY - did this on purpose in case user forgets a trailing '/'
        pickle_dir = OSU.create_directory(
            self.output_dir + "/pickles/"
        )  #JBL - extra // in this directory name  # AMY - did this on purpose in case user forgets a trailing '/'
        infiles = glob.glob(self.input_dir + "/*_reactivities.txt")

        # Pre-processing all input reactivities files - trimming adapter, recalculating thetas, calculating rhos
        max_best_states = 0
        rhos = {}
        rhos_cut = {}

        #JBL TODO - check for 3 input files
        # Set up and run parallized calculations on each length
        args_pool = zip(infiles, repeat(self.output_dir), repeat(ct_dir),
                        repeat(pickle_dir), repeat(self.adapterseq),
                        repeat(self.endcut), repeat(self.pol_fp),
                        repeat(self.e), repeat(self.constrained_c),
                        repeat(self.cap_rhos), repeat(self.scale_rho_max),
                        repeat(self.scaling_func), repeat(self.weight_paired))
        print "run args_pool length: " + str(len(args_pool))

        if self.p > 1:  # start pool if multithread
            #JBL TODO - check multithread with 3 input files
            pool = Pool(processes=self.p)
            for length_key, file_data_length_key, struct_distances_length, num_min_states, rho, rho_cut in pool.imap(
                    PCSU.run_cotrans_length_helper, args_pool):
                print "done length_key: " + str(length_key)
                if max_best_states < num_min_states:
                    max_best_states = num_min_states
                self.file_data[length_key] = file_data_length_key
                self.struct_distances[length_key] = struct_distances_length
                rhos[length_key +
                     self.endcut] = "\t".join([str(r) for r in rho]) + "\n"
                rhos_cut[length_key +
                         self.endcut] = "\t".join([str(r)
                                                   for r in rho_cut]) + "\n"
        else:  # no multiprocessing
            for args_slice in args_pool:
                length_key, file_data_length_key, struct_distances_length, num_min_states, rho, rho_cut = PCSU.run_cotrans_length_helper(
                    args_slice)
                print "done length_key: " + str(length_key)
                if max_best_states < num_min_states:
                    max_best_states = num_min_states
                self.file_data[length_key] = file_data_length_key
                self.struct_distances[length_key] = struct_distances_length
                rhos[length_key +
                     self.endcut] = "\t".join([str(r) for r in rho]) + "\n"
                rhos_cut[length_key +
                         self.endcut] = "\t".join([str(r)
                                                   for r in rho_cut]) + "\n"

        # Output the rho reactivity matrix
        with open(self.output_dir + "rho_table.txt", 'w') as f:
            print "sorted(rhos): " + str(len(rhos.keys()))
            for key in sorted(rhos):
                f.write(rhos[key])
        with open(self.output_dir + "rho_table_cut.txt", 'w') as f:
            print "sorted(rhos): " + str(len(rhos_cut.keys()))
            for key in sorted(rhos_cut):
                f.write(rhos_cut[key])

        # organizing files into their respective directories
        for file_ext in ["rho", "theta", "seq", "pfs", "con", "efn2"]:
            OSU.create_directory(self.output_dir + file_ext + "_dir/")
            OSU.system_command(
                "mv %s/*%s %s/%s_dir/" %
                (self.output_dir, file_ext, self.output_dir, file_ext))

        #import ipdb; ipdb.set_trace() #JBL- entering debugging here - breakpoint 1
        self.generate_output()  # generate majority of output
コード例 #12
0
See examples/run_CoTrans_example.sh for an example of how to use this code.

Author: Angela M Yu, 2014-2016
Version: 0.0.1

Copyright (C) 2016  Julius B. Lucks and Angela M Yu.
All rights reserved.
Distributed under the terms of the GNU General Public License, see 'LICENSE'.
"""

import R2D2
import LucksLabUtils_config
import OSU

LucksLabUtils_config.config("Quest_R2D2")
OSU.system_command("echo $PATH")
OSU.system_command("echo $CLASSPATH")

opts = OSU.getopts("", [
    "in_dir=", "out_dir=", "adapter=", "p=", "e=", "endcut=", "constrained_c=",
    "scale_rho_max=", "draw_all=", "most_count_tie_break=", "scaling_func=",
    "weight_paired=", "cap_rhos=", "pol_fp="
])
print opts

# This specifically calls R2D2.R2D2() assuming the user has specified the arguments:
# in_dir, out_dir, adapter, e, endcut, constrained_c, scale_rho_max, draw_all, most_count_tie_break, scaling_func, weight_paired, cap_rhos, pol_fp
# Only in_dir, out_dir, and adapter are truly required to run R2D2.R2D2(). Default values for the other parameters are set within R2D2.py.

cotrans = R2D2.R2D2(
    opts['--in_dir'],
コード例 #13
0
def generate_MFE_CoTrans_movie(seq,
                               outdir,
                               seq_start=-1,
                               seq_end=-1,
                               rhos_dir="",
                               SHAPE_direct=False):
    """
    Generate co-transcriptional MFE folding movie.
    Options to start and end at specific lengths, seq_start and seq_end respectively.
    Can overlay rho reactivities if given a directory with .rho files corresponding to the sequence.
    """
    OSU.create_directory(outdir)
    OSU.create_directory(outdir + "/seq/")
    OSU.create_directory(outdir + "/ct/")
    if seq_start == -1:
        seq_start = 0
    if seq_end == -1:
        seq_end = len(seq)
    else:
        seq_end += 1
    zero_padding = int(math.floor(math.log10(seq_end)) + 1)
    varna_num = 0
    rhos = {}
    if rhos_dir != "":
        # reads through .rho files found in rhos_dir
        for rf in glob.glob(rhos_dir + "/*.rho"):
            # read in each rho reactivitiy spectra
            with open(rf, "r") as f:
                rho = [line.split()[1] for line in f.readlines()]
                rhos[len(rho)] = [rho, rf]  # add in rho file here

    for seqi in range(seq_start + 1, seq_end + 1):
        if seqi in rhos:
            rho_varna = "\"" + ";".join(rhos[seqi][0] +
                                        (["-1"] * (seq_end - seqi))) + "\""
        else:
            rho_varna = "\"" + ";".join(["-1"] * (seq_end)) + "\""
        seqf = outdir + "/seq/" + str(seqi) + ".seq"
        ctf = outdir + "/ct/" + str(seqi) + ".ct"
        NAU.make_seq(seq[seq_start:seqi], seqf)
        if SHAPE_direct and seqi in rhos:
            SU.runRNAstructure_fold(seqf, ctf, rhos[seqi][1])
        elif SHAPE_direct:
            continue
        else:
            SU.runRNAstructure_fold(seqf, ctf)
        SU.run_ct2dot(ctf, 0, "temp.dbn")
        OSU.system_command("sed '$s/$/&%s/' temp.dbn > temp_ext.dbn " %
                           ("." * (seq_end - seqi)))
        varna_num += 1
        run_VARNA(
            "temp_ext.dbn",
            outdir + str(varna_num).zfill(zero_padding) + "_structure.png",
            rho_varna)
        convert_center_resize(
            outdir + str(varna_num).zfill(zero_padding) + "_structure.png",
            "1440x2000")
    OSU.remove_file(outdir + "temp.dbn")
    OSU.remove_file(outdir + "temp_ext.dbn")
    generate_movie(outdir + "%%%dd_structure.png" % (zero_padding),
                   outdir + "/movie.mp4", "")
コード例 #14
0
def run_KineFold(reqfile):
    """
    Calls KineFold with supplied reqfile.
    """
    OSU.system_command("kinefold_long_static %s -noprint" % (reqfile))
コード例 #15
0
        for i in range(1, 48)
    ]
else:
    raise NotImplementedError(
        "Needs --100_times_dir option or --3_times_dirs, --50_times_dir, and --47_times_dir"
    )

combined = defaultdict(set)

for count, td in enumerate(times_dirs):
    dg_dump_file = td + "/DG_state_plot.dump"
    if not OSU.check_file_exists(dg_dump_file):
        if OSU.check_file_exists(td + "results_except_draw.tgz"):
            print td + "results_except_draw.tgz: unpacking DG_state_plot.dump"
            OSU.system_command(
                "tar -zxvf %sresults_except_draw.tgz -C %s ./DG_state_plot.dump"
                % (td, td))
        else:
            raise IOError("results_except_draw.tgz not found in " + td)

    with open(dg_dump_file, "r") as f:
        print "Reading: " + dg_dump_file
        f.readline()  # throw away header
        for line in f:
            vars = line.split()
            str_key = "%s,%s" % (vars[0], vars[1])
            if vars[3] == "1" and vars[-1] == "1":
                combined[str_key].add(count)
            elif str_key not in combined:
                combined[str_key]
コード例 #16
0
ファイル: PCSU.py プロジェクト: jeanmarcbillod/R2D2
def generate_best_struct_images(cotrans_length, length, longest_length,
                                varna_num, zero_padding, draw_dir, ct_dir,
                                draw_all, most_count_tie_break):
    """
    Generates images of the minimum distance structures at a given length
    """
    print "generate_best_struct_images: " + str(length)
    fname = cotrans_length["filename"]
    rho_varna = "\"" + ";".join([str(r) for r in cotrans_length["rho"]]) + "\""

    seen_snum = []
    mult_images = []
    if cotrans_length["rc_flag"]:  # plot only structures with a good RC
        for snum in cotrans_length["min_dist_indices"]:
            seen_snum.append(snum)
    for sf in range(len(seen_snum)):
        draw_outname_pre = "%s/%s_%s_%s" % (draw_dir, fname, seen_snum[sf],
                                            str(varna_num).zfill(zero_padding))
        if len(seen_snum) > 1 and draw_all:
            draw_outname_pre += "_mult" + str(sf)
            mult_images.append(draw_outname_pre + "_structure.png")
        elif len(seen_snum) > 1 and not draw_all:
            # draw only the structure with the most supporting counts from the Boltzman samples
            structs_str = [",".join(s) for s in cotrans_length["structs"]]
            if most_count_tie_break:
                tie_break = max(
                    dict((k, v) for k, v in
                         cotrans_length["sampled_structs_count"].iteritems()
                         if structs_str.index(
                             k) in cotrans_length["min_dist_indices"]))
                tie_break_i = structs_str.index(tie_break)
            else:
                tie_break = min([
                    cotrans_length["free_energies"][sn]
                    for sn in cotrans_length["min_dist_indices"]
                ])
                tie_break_i = [
                    cotrans_length["free_energies"][sn]
                    for sn in cotrans_length["min_dist_indices"]
                ].index(tie_break)
                tie_break_i = cotrans_length["min_dist_indices"][tie_break_i]
            if tie_break_i != seen_snum[sf]:
                continue
        rho_varna = rho_varna[:-1] + ";".join([""] + ["-1"] *
                                              (longest_length - length)) + "\""
        SU.run_ct2dot(ct_dir + fname + "_unique.ct", seen_snum[sf],
                      draw_outname_pre + ".dbn")

        # determine length of .'s needed to fill in the whole length
        OSU.system_command(
            "sed '$s/$/&%s/' %s.dbn > %s%s_temp.dbn " %
            ("." *
             (longest_length - length), draw_outname_pre, draw_dir, varna_num))
        VIU.run_VARNA(draw_dir + str(varna_num) + "_temp.dbn",
                      draw_outname_pre + "_structure.png",
                      rho_varna)  # same fix this as above
        if sf == len(seen_snum) - 1 and len(
                seen_snum) > 1 and draw_all:  # vertical concat mult images
            v_outname = re.sub("_mult\d+", "", mult_images[0])
            VIU.vertical_image_concat(v_outname, mult_images)
            draw_outname_pre = re.findall("(.*)_structure.png$", v_outname)[0]
        if sf == len(seen_snum) - 1 or not draw_all:
            print draw_dir + str(varna_num).zfill(
                zero_padding) + "_structure.png"
            print "SYM LINK: " + draw_dir + str(varna_num).zfill(
                zero_padding) + "_structure.png"
            OSU.make_symbolic_link(
                re.sub("_mult\d+", "", draw_outname_pre) + "_structure.png",
                draw_dir + str(varna_num).zfill(zero_padding) +
                "_structure.png")
            VIU.convert_center_resize(
                draw_dir + str(varna_num).zfill(zero_padding) +
                "_structure.png", "1200x2800")
        OSU.remove_file(draw_dir + str(varna_num) + "_temp.dbn")
    return draw_dir + str(varna_num).zfill(zero_padding) + "_structure.png"
コード例 #17
0

if __name__ == "__main__":
    # read in arguments
    opts = OSU.getopts("", ["dbn_dirs=", "output_dir="])
    dbn_dirs = opts["--dbn_dirs"].split(",")
    width = 1200 * len(dbn_dirs)
    output_dir = OSU.create_directory(opts["--output_dir"])

    # read dbns to pair correct lengths together
    all_dbns = read_all_dbn_dirs(dbn_dirs)

    # create images by horizontally concatenating previously made images from R2D2 output
    count = 0
    zero_padding = int(math.floor(math.log10(len(all_dbns))) + 1)
    for len in sorted(all_dbns):
        count += 1
        VIU.horizontal_image_concat(
            "%s/%s.png" % (output_dir, str(count).zfill(zero_padding)),
            all_dbns[len])
        VIU.convert_center_resize(
            "%s/%s.png" % (output_dir, str(count).zfill(zero_padding)),
            "%sx2800" % (width))
    print "ffmpeg -framerate 1 -i %s -vcodec mpeg4 -r 10 -s %s -pix_fmt yuv420p %s" % (
        output_dir + "/%%%dd.png" % (zero_padding), "%sx2800" %
        (width), output_dir + "/movie.mp4")
    OSU.system_command(
        "ffmpeg -framerate 1 -i %s -vcodec mpeg4 -r 10 -s %s -pix_fmt yuv420p %s"
        % (output_dir + "/%%%dd.png" % (zero_padding), "%sx2800" %
           (width), output_dir + "/movie.mp4"))
コード例 #18
0
            param_string = "_".join([str(s) for s in param])
            job_name_param = "_".join([
                job_name, param_string
            ])[:31]  # Job name can only be up to 31 characters long

            # create .sh for parameter set if not exists
            if not OSU.check_file_exists("%snbs_script_%s.sh" %
                                         (sub_proc_sh_dir, param_string)):
                header = "##NBS-stdout:%s\n##NBS-stderr:%s\n##NBS-queue:batch\n##NBS-name:\"%s\"\n##NBS-jcoll:\"%s\"\n\nrm %s %s\n" % (
                    sub_proc_dir + job_name_param + ".out",
                    sub_proc_dir + job_name_param + ".err", job_name_param,
                    job_name, sub_proc_dir + job_name_param + ".out",
                    sub_proc_dir + job_name_param + ".err")
                OSU.system_command(
                    "echo \"%s/usr/bin/time /fs/home/amy35/tools/anaconda/bin/python ../find_parameters.py -r \'%s\' -c \'%s\' -o %s %s -n %s -p 1 --scaling_func %s --cluster_flag False --sub_proc True --arg_slice \'%s\' --job_name %s --load_results \'False\' --generate_structs \'False\' --cap_rhos %s --structs_pickle_dir %s\"> %snbs_script_%s.sh"
                    % (header, opts['-r'], opts['-c'], opts['-o'],
                       sampling_opts_string, opts['-n'],
                       opts['--scaling_func'], param, job_name_param, cap_rhos,
                       structs_pickle_dir, sub_proc_sh_dir, param_string))

            # submit .sh to queue if not running, completed, or no job slots available
            if jobs_available > 0 and not PAU.check_job_on_queue(
                    job_name_param) and not OSU.check_file_exists("".join([
                        training_res_dir, "save_training_results_",
                        param_string, ".p"
                    ])):
                print "/opt/voyager/nbs/bin/jsub %snbs_script_%s.sh -name %s -stdout %snbs_script_%s.out -stderr %snbs_script_%s.err" % (
                    sub_proc_sh_dir, param_string, job_name_param,
                    sub_proc_dir, param_string, sub_proc_dir, param_string)
                OSU.system_command(
                    "/opt/voyager/nbs/bin/jsub %snbs_script_%s.sh -name %s -stdout %snbs_script_%s.out -stderr %snbs_script_%s.err"
                    % (sub_proc_sh_dir, param_string, job_name_param,
コード例 #19
0
def R2D2_process(input_prefix, R2D2_output_dir, draw_dir, react_rhos,
                 crystals_ck, rnum):
    """
    Slightly reduced version of a R2D2 process for this benchmarking code.
    # taking code from cotranscriptional case (PCSU.run_cotrans_length) which has extraneous parts in this use case
    # few lines in PCSU.run_cotrans_length made it unable to be used for this case. ex. length_key

    Options:
    input_prefix - full path plus input prefix of reactivities
    R2D2_output_dir - R2D2 output directoory
    draw_dir - directory for .dbn output
    react_rhos - rho reactivities
    rnum - iteration number, names output files accordingly
    """
    e = 50000
    fname = re.findall("([^/]+)$", input_prefix)[0]
    output_prefix = "%s/%s_%s" % (R2D2_output_dir, fname, rnum)
    scaling_fns = {
        "D": SU.invert_scale_rho_vec,
        "U": SU.scale_vec_avg1,
        "K": SU.cap_rho_or_ct_list
    }
    scaling_func = "K"
    scale_rho_max = 1.0
    constrained_c = 3.5
    cap_rhos = True
    weight_paired = 0.8
    sampled_structs_count = defaultdict(int)
    sampled_structs = set()
    # Vanilla Sampling
    if lock is None:
        structs, structs_labels = SU.RNAstructure_sample(input_prefix,
                                                         e,
                                                         R2D2_output_dir,
                                                         label="noshape",
                                                         num_proc=1,
                                                         wn_tag="_%s" % (rnum))
    else:
        structs, structs_labels = SU.RNAstructure_sample(input_prefix,
                                                         e,
                                                         R2D2_output_dir,
                                                         label="noshape",
                                                         num_proc=1,
                                                         wn_tag="_%s" % (rnum),
                                                         lock=lock)
    sampled_structs.update(structs_labels)
    OSU.increment_dict_counts(sampled_structs_count, structs)
    # Sampling with SHAPE constraints
    if lock is None:
        structs, structs_labels = SU.RNAstructure_sample(
            input_prefix,
            e,
            R2D2_output_dir,
            shapefile=input_prefix + ".rho",
            label="shape",
            num_proc=1,
            wn_tag="_%s" % (rnum))
    else:
        structs, structs_labels = SU.RNAstructure_sample(
            input_prefix,
            e,
            R2D2_output_dir,
            shapefile=input_prefix + ".rho",
            label="shape",
            num_proc=1,
            wn_tag="_%s" % (rnum),
            lock=lock)
    sampled_structs.update(structs_labels)
    OSU.increment_dict_counts(sampled_structs_count, structs)
    # Sampling with hard constraints
    XB = SU.get_indices_rho_gt_c(react_rhos, constrained_c,
                                 one_index=True)  # RNAstructure is 1-indexed
    SU.make_constraint_file(output_prefix + ".con", [], XB, [], [], [], [], [],
                            [])
    if lock is None:
        structs, structs_labels = SU.RNAstructure_sample(
            input_prefix,
            e,
            R2D2_output_dir,
            constraintfile=output_prefix + ".con",
            label="constrained_" + str(constrained_c),
            num_proc=1,
            wn_tag="_%s" % (rnum))
    else:
        structs, structs_labels = SU.RNAstructure_sample(
            input_prefix,
            e,
            R2D2_output_dir,
            constraintfile=output_prefix + ".con",
            label="constrained_" + str(constrained_c),
            num_proc=1,
            wn_tag="_%s" % (rnum),
            lock=lock)
    sampled_structs.update(structs_labels)
    OSU.increment_dict_counts(sampled_structs_count, structs)
    # Compressing sampled structures further by removing duplicates sampled by multiple methods. Keeping track of this though.
    # Saving more than I need to in this use case... ex. energies
    sampled_structs = SU.merge_labels(sampled_structs, to_string=False)
    structs = [t[0].split(",") for t in sampled_structs]
    SU.cts_to_file(structs, crystals_ck[1], output_prefix + "_unique.ct")
    SU.runRNAstructure_efn2(output_prefix + "_unique.ct",
                            output_prefix + ".efn2")
    free_energies = SU.get_free_energy_efn2(output_prefix + ".efn2")
    if cap_rhos:
        scaled_rhos = scaling_fns[scaling_func](react_rhos, scale_rho_max)
    else:
        scaled_rhos = scaling_fns[scaling_func](react_rhos)
    with open(input_prefix + ".best_scaled_rho", "w") as f:
        f.write("\n".join([
            "\t".join([str(zi), str(zr)]) for zi, zr in enumerate(scaled_rhos)
        ]))
    # Compute distances between scaled rhos and paired-vectors from drawn structures
    binary_structs = SU.ct_struct_to_binary_vec(structs)
    distances = []
    for s in binary_structs:
        distances.append(
            SU.calc_bp_distance_vector_weighted(
                s,
                scaled_rhos,
                scaling_func=scaling_func,
                invert_struct="D" != scaling_func,
                paired_weight=weight_paired))
    min_distance = min(distances)
    min_dist_indices = [
        i for i, v in enumerate(distances) if v == min_distance
    ]
    # compare R2D2 against crystal structure
    selected_react_mats = []
    for mdi in min_dist_indices:
        react_mat = SU.ct_struct_to_binary_mat(structs[mdi])
        selected_react_mats.append(numpy.matrix(react_mat))
        curr_prefix = "%s_%s_R2D2" % (output_prefix, mdi)
        curr_stats = SU.calc_benchmark_statistics_matrix(
            react_mat, crystals_ck[2])
        with open(curr_prefix + ".stats", "w") as f:
            f.write(str(curr_stats))
        #make file
        SU.ct_list_to_file(structs[mdi], crystals_ck[1], curr_prefix + ".ct")
        SU.runRNAstructure_CircleCompare(curr_prefix + ".ct", crystals_ck[3],
                                         curr_prefix + ".ps")
        OSU.system_command("convert %s.ps %s.jpg" % (curr_prefix, curr_prefix))
    # saving R2D2 results
    R2D2_save = {}
    R2D2_save["structs"] = structs
    R2D2_save["distances"] = distances
    R2D2_save["min_dist_indices"] = min_dist_indices
    R2D2_save["min_distance"] = min_distance
    R2D2_save["scaled_rhos"] = scaled_rhos
    R2D2_save["react_mat"] = react_mat
    pickle.dump(R2D2_save, open(curr_prefix + ".p", "wb"))
    # output .dbn's like in normal R2D2 process
    # code taken from PCSU.generate_best_struct_images
    # PCSU.generate_best_struct_images contained some extraneuous calls for this use case. ex. draw_all = False, running VARNA
    seen_snum = []
    iter_dbn_dir = OSU.create_directory("%s/%s" % (draw_dir, rnum))
    for snum in min_dist_indices:
        seen_snum.append(snum)
    for sf in range(len(seen_snum)):
        draw_outname_pre = "%s/%snt_%s" % (iter_dbn_dir, len(react_rhos),
                                           seen_snum[sf])
        if len(seen_snum) > 1:
            draw_outname_pre += "_mult" + str(sf)
        SU.run_ct2dot(output_prefix + "_unique.ct", seen_snum[sf],
                      draw_outname_pre + ".dbn")
    # return curr_stats and selected structures
    return curr_stats, selected_react_mats
コード例 #20
0
def horizontal_image_concat(outfile, images):
    """
    Horizontal concatenate images to a new image file.
    """
    OSU.system_command("convert +append " + " ".join(images) + " " + outfile)