def MakePlots(self, OutPreOther, OutPreSame): """ Plotting the ROC, Score of the Model """ AucOthers, AucSames = [], [] PlotService.RocCurve("./",OutPreOther,self.DataSet,self.ModelNames) if(len(self.ModelNames) == 1): AucOther, AucSame = PlotService.Score("./",OutPreOther[0],OutPreSame[0],self.DataSet,self.ModelNames[0]) elif(len(self.ModelNames) > 1): for i,Name in enumerate(self.ModelNames): AucOther, AucSame = PlotService.Score("./",OutPreOther[i],OutPreSame[i],self.DataSet,Name) AucOthers.append(AucOther) AucSames.append(AucSame) return AucOthers, AucSames
def PreTrainedFNN(self): LOutPreOther = [] for Name in self.ModelNames: OutPreOther, OutPreSame = self.GetOutPreFromFile(Name) PreLabelsOther, PreLabelsSame = self.PredictClasses( OutPreOther, OutPreSame) #self.MakeConfusionMatrix(Name, PreLabelsOther, PreLabelsSame) Classnum = 13 PlotService.MultiScore("./plots/", OutPreOther[:, Classnum], OutPreSame[:, Classnum], self.DataSet, Name, Classnum) #Score for Sig PlotService.Score("./plots/", OutPreOther[:, Classnum], OutPreSame[:, Classnum], self.DataSet, Name) #Fit(OutPreOther) LOutPreOther.append(OutPreOther[:, 0]) PlotService.RocCurve("./plots/", LOutPreOther, self.DataSet, self.ModelNames)
def EvaluateFNN(self): LOutPreOther = [] for Name in self.ModelNames: if ("BDT" in Name): #Import the BDT Scores as comperison OutPreOther, OutPreSame = self.GetOutPreFromFile(Name) else: OutPreOther, OutPreSame = self.GetOutPreFromRoc(Name) PreLabelsOther, PreLabelsSame = self.PredictClasses( OutPreOther, OutPreSame) self.MakeConfusionMatrix(Name, PreLabelsOther, PreLabelsSame) PlotService.Score("./plots/", OutPreOther[:, 0], OutPreSame[:, 0], self.DataSet, Name) PlotService.MultiScore("./plots/", OutPreOther[:, 0], OutPreSame[:, 0], self.DataSet, Name, 0) #Score for Sig LOutPreOther.append(OutPreOther[:, 0]) PlotService.RocCurve("./plots/", LOutPreOther, self.DataSet, self.ModelNames)