def main(): '''main function for generating portfolio''' pp = [] choices = [] goodAlphas = [ 'alpha083', 'alpha101', 'alpha024', 'alpha042', 'alpha028', 'alpha025', 'alpha018', 'alpha010', 'alpha047', 'alpha033', 'alpha009', 'alpha005', 'alpha051' ] dist = YFI(0) X, Y = Process.ProcessData(dist, 2) #alphaIndex = Alphas.SingleAlpha(X, Y, 13) for i in range(5): result = Prediction.AvgedPredict(dist, X, Y, goodAlphas[:13], 30, 8) print(result) return result
#Calculate percentage return on particular month goodAlphas = [ 'alpha083', 'alpha101', 'alpha024', 'alpha042', 'alpha028', 'alpha025', 'alpha018', 'alpha010', 'alpha047', 'alpha033', 'alpha009', 'alpha005', 'alpha051' ] alphaIndex = goodAlphas #target = datetime.datetime(year = 2020, month = 7, day = 1) #result = Testing.Designated(target, dist, X, Y, alphaIndex, 10) print('Starting to train neural networks......') n1 = timi.time() resl = {} ress = {} for i in range(10): reslo, ressh = Prediction.AvgedPredict(dist, X, Y, alphaIndex, 10, 10, '08-01-2020') for j in reslo: if j in resl: resl[j] += 1 else: resl[j] = 1 for k in ressh: if k in ress: ress[k] += 1 else: ress[k] = 1 print(str(i) + ' out of 10 done') n2 = int(timi.time() - n1) / 60 print('Entire Training took' + str(n2) + ' min') resl = sorted(resl.items(), key=lambda x: x[1], reverse=True)