コード例 #1
0
            if ((int(old_cent[0]) - a) <= cent[0] <= (int(old_cent[0]) + a)) and (
                    (int(old_cent[1]) - a) <= cent[1] <= (int(old_cent[1]) + a)) and (
                    (int(old_cent[2]) - a) <= cent[2] <= (int(old_cent[2]) + a)):
                continue
            else:
                return False

        return True


'''
file_path = '/Users/Rozen_mac/code/mining/K_means/sample.jpg'
img = R.Read_JPG(file_path)
for i in range(2, 6):
    px = img.load()
    k = Kmeans(img, k=i)
    reslut = k.fit()
    k.drawWindows(reslut, str(i))

'''

file_path = '/Users/Rozen_mac/code/mining/K_means/sample2.jpg'
img = R.Read_JPG(file_path)
px = img.load()
#for i in range(2, 6):
px = img.load()
k = Kmeans(img, k=5)
reslut = k.fit()
k.drawWindows(reslut, str(4))
コード例 #2
0
ファイル: DBScan.py プロジェクト: RozenAstrayChen/Data_Mining
        self.r = rgb[0]
        self.g = rgb[1]
        self.b = rgb[2]
        self.x = x
        self.y = y
        self.visited = False
        self.isnoise = False

    def show(self):
        return self.r, self.g, self.b


if __name__ == '__main__':

    # read an image
    i = R.Read_JPG('sample.jpg')
    width, height = i.size

    cpixels = []
    all_pixels = []  # list of tuples
    for x in range(width):
        for y in range(height):
            cpixel = i.getpixel((x, y))
            cpixels.append(cpixel)
            all_pixels.append(DataSet(cpixel, x, y))

            # Create object of DBSCAN class
    dbScan = DBSCAN()
    # Initialise dataSet
    dbScan.DB = all_pixels
    # build clusters