コード例 #1
0
def ejecutando_algoritmo(a):

    save_path = '/home/optimizacion_final/datos_json'

    name_of_file = 'estado'

    completeName = os.path.join(save_path, name_of_file + ".txt")

    with open(completeName) as json_file:
        data = json.load(json_file)

    data[a]['estado'] = 'ejecutando'

    with open(completeName, 'w') as outfile:
        json.dump(data, outfile)

    if (a == 'GA'):
        GA.ejecutarGA()

    if (a == 'SA'):
        SA.ejecutarSA()

    if (a == 'PSO'):
        PSO.ejecutarPSO()

    if (a == 'ACO'):
        ACO.ejecutarACO()
コード例 #2
0
def get_information(file_path):  # using target_MDG and a benchmark, create result
    """
    Execute Each algorithm for given file and return TurboMQ, cohesion, and coupling
    :param file_path: A path of dot file
    :return: Clustering result - value of TurboMQ, A list of [Cohesion, Coupling], A list of result clusters
    """
    targetMDG = make_target_MDG(file_path)
    methods = ['WCA', 'HC', 'WCA_HC', 'SA', 'WCA_SA', 'PSO', 'WCA_PSO']
    clusters_set = []
    TMQ = []
    cohe_coup = []
    print("====WCA start====\n")
    clusters_set.append(WCA(targetMDG))
    print("====WCA end====\n\n")
    
    print("====HC start====\n")
    clusters_set.append(HC.HC(targetMDG))
    print("====HC end====\n\n")
    
    print("====WCA_HC start====\n")
    clusters_set.append(HC.WCA_HC(targetMDG, WCA(targetMDG)))
    print("====WCA_HC end====\n\n")
    
    print("====SA start====\n")
    clusters_set.append(SA.SA(targetMDG))
    print("====SA end====\n\n")
    
    print("====WCA_SA start====\n")
    clusters_set.append(SA.WCA_SA(targetMDG, WCA(targetMDG)))
    print("====WCA_SA end====\n\n")
    
    print("====PSO start====\n\n")
    clusters_set.append(PSO.PSO(targetMDG))
    print("====PSO end====\n\n")
    
    print("====WCA_PSO start====\n\n")
    clusters_set.append(PSO.WCA_PSO(targetMDG, WCA(targetMDG)))
    print("====WCA_PSO end====\n\n")
    
    # get TMQ data
    for clusters in clusters_set:
        TMQ.append(TurboMQ.calculate_fitness(clusters, targetMDG))
        cohe_coup.append(TurboMQ.get_cohesion_coupling(clusters, targetMDG))
    # write result files
    for i in range(len(methods)):
        DotParser.write_file(file_path, methods[i], clusters_set[i], targetMDG)
        
    return TMQ, cohe_coup, clusters_set
コード例 #3
0
def TSP(stops, Alg, steps, param, seed=None, coordfile='xycoords.txt'):
    '''A wrapper function that attempts to optimize the traveling
    salesperson problem using a specified algorithm. If coordfile
    exists, a preexisting set of coordinates will be used. Otherwise,
    a new set of "stops" coordinates will be generated for the person to
    traverse, and will be written to the specified file.'''

    # Create the distance matrix, which will be used to calculate
    # the fitness of a given path
    if os.path.isfile(coordfile):
        coords = scipy.genfromtxt(coordfile)
        distMat = DistanceMatrix(coords)
    else:
        distMat = GenerateMap(stops, fname=coordfile, seed=seed)

    if Alg == 'HC':
        # param is the number of solutions to try per step
        bestSol, fitHistory = hc.HillClimber(steps, param, distMat, seed)
    elif Alg == 'SA':
        # param is a placeholder
        bestSol, fitHistory = sa.SimulatedAnnealing(steps, param, distMat,
                                                    seed)
    elif Alg == 'MC3':
        # param is the number of chains
        bestSol, fitHistory = mc3.MCMCMC(steps, param, distMat, seed)
    elif Alg == 'GA':
        # param is the population size
        bestSol, fitHistory = ga.GeneticAlgorithm(steps, param, distMat, seed)
    else:
        raise ValueError('Algorithm must be "HC", "SA", "MC3", or "GA".')

    outfname = coordfile + '-' + Alg + '-' + \
        str(steps) + '-' + str(param) + '.txt'
    scipy.savetxt(outfname, scipy.array(bestSol), fmt='%i')
    return bestSol, fitHistory
コード例 #4
0
def main():
    # 读取订单数据,订单总金额列表
    order_list, order_money = read_data()
    # 当订单队列不为空的时候按天数进行订单处理
    while len(order_list) > 0:
        global day
        # 选取今天的订单组成订单矩阵
        today_order, today_money = select_today(order_list)
        # 对今天的订单矩阵进行优化调度
        sa = SA.SA(today_order, today_money)
        result = sa.slove()
        print('%s天调度结果:%s' % (str(day), str(result)))
        # 根据调度处理更新订单队列
        update_order(result, order_list, order_money, today_order)
        print('%s天调度结束后订单队列:%s' % (str(day), str(order_list)))
        # 根据调度结果更新订单消耗成本
        update_lost(result, order_money, today_order)
        # 天数加一
        day += 1

    # 计算最终收益
    total_money = 0
    for i in range(len(order_money)):
        total_money += order_money[i]
    print("最终利益为:%d" % total_money)
コード例 #5
0
    def runGrasp(self, graph, maxIter):

        bestSolution = self.initialSolution(graph)
        bestSolutionColors, sumOfBestColors = graph.checkColor()

        for i in range(maxIter):

            # Reseta as cores do grafo
            self.resetGraph(graph)

            # ListColors, inicialmente eh passada como uma lista de tamanho = qtdVertices no grafo do tipo boolean com todas as posicoes com valor False, indicando que a cor nao foi totalmente verificada no RCL
            self.listColors = self.initListColors(graph)

            # Chama a fase construtiva do GRASP
            newGraph = self.constructivePhase(graph)

            solutionColors, sumOfColors = newGraph.checkColor()

            sa = SA.SA()
            solutionColors, graph = sa.runSa(None, 10000, 20, 0.95, 1000,
                                             False, newGraph, solutionColors)

            solution = graph.getVertices().copy()

            bestSolution, bestSolutionColors = self.updateSolution(
                solution, solutionColors, bestSolution, bestSolutionColors)

        return bestSolutionColors
コード例 #6
0
def algrun():
    global t, list
    time_start = time.time()

    map = Map.Map()

    x, y = Read.Read()
    map.path[0] = x
    map.path[1] = y

    # state == 0: SA,  state == 1: LS
    state = 0

    if state == 0:
        # SA(map, T, Coolrate)
        alg = SA.SA(map, 100, 0.001)
        alg.run()
    elif state == 1:
        # LS(map, state), state = 0: LS1, state = 1: LS2, state = 2: 2-OPT
        alg = LS.LS(map, 2)
        alg.run()
    list.append(alg.path.distance())
    time_end = time.time()
    t += (time_end - time_start)
    print('totally cost', time_end - time_start, 's')
コード例 #7
0
def run(FacilityNum, CustomerNum, Capacity, OpeningCost, Demand, Assignment):
    test = SA.SA(FacilityNum, CustomerNum, Capacity, OpeningCost, Demand,
                 Assignment)
    time_start = time.time()
    Str = test.run()
    time_end = time.time()
    Str += "Time cost: " + str(time_end - time_start) + 's\n\n'
    return Str
コード例 #8
0
    def getBestCrossover(self):
        from pprint import pprint

        #self.tickerSymbol = self.tickerTextBox.get()

        if self.stockVar.get() == 4:
            self.tickerSymbol = self.tickerTextBox.get()
        print(self.pressed)
        if self.pressed == 0:  #Box not checked
            self.startDate = self.date1TextBox.get()
            self.endDate = self.date2TextBox.get()
        #print(startDate, endDate)
        #print((ystockquote.get_historical_prices(tickerSymbol, startDate, endDate).keys()))
        #print(str(ystockquote.get_historical_prices(tickerSymbol, startDate, endDate)))
        entireDictionaryOfData = ystockquote.get_historical_prices(
            self.tickerSymbol, self.startDate, self.endDate)
        #entireDictionaryOfData = ystockquote.get_historical_prices('CAS', '2013-11-01', '2013-11-05')
        #pprint(entireDictionaryOfData.keys())

        listOfDates = self.getListOfDatesFromHistoricalData(
            entireDictionaryOfData)
        #print(listOfDates)
        listOfCloses = self.getListOfClosesFromHistoricalData(
            entireDictionaryOfData, listOfDates)
        #print(entireStringOfData.find("'Close'"))
        #print(ystockquote.get_trade_date('GOOG'))

        #theBestCrossover = PSO.runPSO(listOfCloses)

        if self.algorithmVar.get() == 0:
            theBestCrossover = HillClimbing.runHillClimbing(listOfCloses)
        if self.algorithmVar.get() == 1:
            theBestCrossover = NelderMeadNew.runNelderMead(listOfCloses)
        if self.algorithmVar.get() == 2:
            theBestCrossover = GeneticAlgorithms.runGA(listOfCloses)
        if self.algorithmVar.get() == 3:
            theBestCrossover = DifferentialEvolution.runDE(listOfCloses)
        if self.algorithmVar.get() == 4:
            theBestCrossover = PSO.runPSO(listOfCloses)
        if self.algorithmVar.get() == 5:
            theBestCrossover = SA.runSA(listOfCloses)
            #theBestCrossover = PSO.figureOutBestConstants(listOfCloses)

        #theBestCrossover = NelderMeadNew.runNelderMead(listOfCloses)

        shortLength = theBestCrossover[0]
        longLength = theBestCrossover[1]

        if shortLength > longLength:
            shortLength, longLength = longLength, shortLength
        #return ('Short Length = '', Long Length = ').format(shortLength, longLength
        #print(listOfDates)
        self.bestCrossoverLabel['text'] = 'The Best Crossover is: '
        self.answerLabel['text'] = 'Short Length = ' + str(
            shortLength) + ', Long Length = ' + str(longLength)

        self.makeGraph(listOfCloses, listOfDates, self.tickerSymbol,
                       shortLength, longLength)
コード例 #9
0
def main():

    parser = argparse.ArgumentParser(description='Modularize given dot file')
    parser.add_argument('file_path',
                        metavar='F',
                        type=str,
                        nargs='+',
                        help='File path for dot file')
    parser.add_argument(
        '-a',
        help=
        'Algorithm for modularization. All, WCA, HC, WCA_HC, SA, WCA_SA, PSO, WCA_PSO'
    )
    args = parser.parse_args()

    file_path = args.file_path
    if args.a:
        modularizeMethod = args.a
    else:
        modularizeMethod = 'All'

    for single_file in file_path:

        targetMDG = MakeResult.make_target_MDG(single_file)
        clusters = None
        if modularizeMethod == 'WCA':
            clusters = WCA(targetMDG)
        elif modularizeMethod == 'HC':
            clusters = HC.HC(targetMDG)
        elif modularizeMethod == 'WCA_HC':
            clusters = HC.WCA_HC(targetMDG, WCA(targetMDG))
        elif modularizeMethod == 'SA':
            clusters = SA.SA(targetMDG)
        elif modularizeMethod == 'WCA_SA':
            clusters = SA.WCA_SA(targetMDG, WCA(targetMDG))
        elif modularizeMethod == 'PSO':
            clusters = PSO.PSO(targetMDG)
        elif modularizeMethod == 'WCA_PSO':
            clusters = PSO.WCA_PSO(targetMDG, WCA(targetMDG))
        elif modularizeMethod == 'All':
            MakeResult.print_result(single_file)

        if modularizeMethod != 'All':
            DotParser.write_file(single_file, modularizeMethod, clusters,
                                 targetMDG)
コード例 #10
0
	def getBestCrossover(self):
		from pprint import pprint
		
		#self.tickerSymbol = self.tickerTextBox.get()

		if self.stockVar.get() == 4:
			self.tickerSymbol = self.tickerTextBox.get()
		print(self.pressed)
		if self.pressed == 0:	#Box not checked
			self.startDate = self.date1TextBox.get()
			self.endDate = self.date2TextBox.get()
		#print(startDate, endDate)
		#print((ystockquote.get_historical_prices(tickerSymbol, startDate, endDate).keys()))
		#print(str(ystockquote.get_historical_prices(tickerSymbol, startDate, endDate)))
		entireDictionaryOfData = ystockquote.get_historical_prices(self.tickerSymbol, self.startDate, self.endDate)
		#entireDictionaryOfData = ystockquote.get_historical_prices('CAS', '2013-11-01', '2013-11-05')
		#pprint(entireDictionaryOfData.keys())
		
		listOfDates = self.getListOfDatesFromHistoricalData(entireDictionaryOfData)
		#print(listOfDates)
		listOfCloses = self.getListOfClosesFromHistoricalData(entireDictionaryOfData,listOfDates)
		#print(entireStringOfData.find("'Close'"))
		#print(ystockquote.get_trade_date('GOOG'))
		
		
		#theBestCrossover = PSO.runPSO(listOfCloses)
		
		if self.algorithmVar.get() == 0:
			theBestCrossover = HillClimbing.runHillClimbing(listOfCloses)
		if self.algorithmVar.get() == 1:
			theBestCrossover = NelderMeadNew.runNelderMead(listOfCloses)
		if self.algorithmVar.get() == 2:
			theBestCrossover = GeneticAlgorithms.runGA(listOfCloses)
		if self.algorithmVar.get() == 3:
			theBestCrossover = DifferentialEvolution.runDE(listOfCloses)
		if self.algorithmVar.get() == 4:
			theBestCrossover = PSO.runPSO(listOfCloses)
		if self.algorithmVar.get() == 5:
			theBestCrossover = SA.runSA(listOfCloses)
			#theBestCrossover = PSO.figureOutBestConstants(listOfCloses)
			

		#theBestCrossover = NelderMeadNew.runNelderMead(listOfCloses)

		
		
		shortLength = theBestCrossover[0]
		longLength = theBestCrossover[1]
		
		if shortLength > longLength: 
			shortLength, longLength = longLength, shortLength
		#return ('Short Length = '', Long Length = ').format(shortLength, longLength
		#print(listOfDates)
		self.bestCrossoverLabel['text'] = 'The Best Crossover is: '
		self.answerLabel['text'] = 'Short Length = '+ str(shortLength) + ', Long Length = ' + str(longLength)
		
		self.makeGraph(listOfCloses, listOfDates, self.tickerSymbol, shortLength, longLength)
コード例 #11
0
	def SA(self):
		
		begin = timeit.default_timer()

		sa = SA.SA()
		cores_usadas, self.graph = sa.runSa(self.graph, 10000, 20, 0.95, 1000, True, None, None)
		
		end = timeit.default_timer()

		# Gera o arquivo de saida
		self.outFile(cores_usadas, (end - begin))
コード例 #12
0
ファイル: runSA.py プロジェクト: kyl27/Heuristics
def run_trials(T0, alpha, out_avg_file):
    beta = 1
    m_initial = 1
    max_time = 1100

    trials = 30

    solution_sets = []
    best_s_sets = []

    total_cpu_time = 0

    for i in range(trials):
        t = time()
        (solution, best_s) = SA.simulated_annealing(Z[i], T0, alpha,
                                                    beta, m_initial, max_time)
        total_cpu_time += (time() - t)

        solution_sets.append(solution)
        best_s_sets.append(best_s)

    # Best vs. Cur Cost
    with open(out_avg_file, 'w') as out_file:
        for i in range(max_time):
            total_cost_current = 0
            total_cost_best = 0
            for sol in range(trials):
                total_cost_current += solution_sets[sol][i][1]
                total_cost_best += solution_sets[sol][i][2]
            iteration = solution_sets[sol][i][0]

            avg_cost_current = total_cost_current / trials
            avg_cost_best = total_cost_best / trials

            out_file.write("%d, %f, %f\n" % (iteration,
                                             avg_cost_current,
                                             avg_cost_best))

    # Avg and Std deviation
    G = 1000
    best_costs = numpy.zeros([trials, 1])
    for sol in range(trials):
        best_costs[sol] = solution_sets[sol][G][2]

    avg_cost = numpy.mean(best_costs)
    std_cost = numpy.std(best_costs)

    print "Average best cost: %f, Std Dev: %f" % (avg_cost, std_cost)

    # Avg CPU Time
    avg_cpu_time = total_cpu_time / trials
    print "Average CPU time: %f" % avg_cpu_time
コード例 #13
0
ファイル: runSA.py プロジェクト: kyl27/Heuristics
def run_trials(T0, alpha, out_avg_file):
    solution_sets = []
    best_s_sets = []

    total_cpu_time = time()

    for i in range(trials):
        (solution, best_s) = SA.simulated_annealing(Z[i], T0, alpha,
                                                    beta, m_initial, max_time)
        solution_sets.append(solution)
        best_s_sets.append(best_s)

    total_cpu_time = time() - total_cpu_time

    # Best vs. Cur Cost
    with open(out_avg_file, 'w') as out_file:
        for i in range(max_time):
            total_cost_current = 0
            total_cost_best = 0
            for sol in range(trials):
                total_cost_current += solution_sets[sol][i][1]
                total_cost_best += solution_sets[sol][i][2]
            iteration = solution_sets[sol][i][0]

            avg_cost_current = total_cost_current / trials
            avg_cost_best = total_cost_best / trials

            out_file.write("%d, %f, %f\n" % (iteration,
                                             avg_cost_current,
                                             avg_cost_best))

    # Avg and Std deviation
    best_costs = numpy.zeros([trials, 1])
    for sol in range(trials):
        best_costs[sol] = solution_sets[sol][max_time - 1][2]

    avg_cost = numpy.mean(best_costs)
    std_cost = numpy.std(best_costs)

    print("Average best cost: %f, Std Dev: %f" % (avg_cost, std_cost))

    # Avg CPU Time
    avg_cpu_time = total_cpu_time / trials
    print("Average CPU time: %f" % avg_cpu_time)

    with open("best_solutions_SA.txt", 'w') as output:
        output.write('SA = [')
        for best_cost in best_costs:
            output.write(str(best_cost[0]) + ' ')
        output.write('];')
コード例 #14
0
    def run(self):
        for index in range(len(result)):

            threadLock.acquire()
            global current
            current = index
            threadLock.release()

            num = result[index][0]
            ch = result[index][1]
            po = result[index][2]
            #print(num)
            #print(ch)
            #print(po)
            string = SA.bi(ch, po)
            cursor.execute("update raw2 set bilingual=%s where num=%s",
                           [string, num])
            db.commit()
コード例 #15
0
ファイル: SAParameter.py プロジェクト: kyl27/Heuristics
import SA
import random

ap = 20
min_s = 0
max_s = 127
s_values = []
cost_values = []

#Set initial values
s = [random.randint(min_s, max_s), random.randint(min_s, max_s)]
cost_s = SA.cost(s)

s_values.append(s)
cost_values.append(cost_s)
best_s = s
best_cost = cost_s

# Find other s_values and calculate their costs
while len(s_values) != 20:
    s = [random.randint(min_s, max_s), random.randint(min_s, max_s)]
    if s not in s_values:
        cost_s = SA.cost(s)
        if cost_s < best_cost:
            best_s = s
            best_cost = cost_s
        s_values.append(s)
        cost_values.append(cost_s)

コード例 #16
0
ファイル: Main.py プロジェクト: StefanWangsjtu/TSP
          (119.3, 26.08), (115.89, 28.68), (113, 28.21), (114.31, 30.52),
          (113.23, 23.16), (121.5, 25.05), (110.35, 20.02), (103.73, 36.03),
          (108.95, 34.27), (104.06, 30.67), (106.71, 26.57), (102.73, 25.04),
          (114.1, 22.2), (113.33, 22.13)]

city = city34
d = cal_distance(city)

aco_round = 5000
ga_round = 5000
ts_round = 5000
sa_round = 5000
aco_champions, aco_best, aco_t = ACO.tsp_aco(city, d, aco_round)
ga_champions, ga_best, ga_t = GA.tsp_ga(city, d, ga_round)
ts_champions, ts_best, ts_t = TS.tsp_ts(city, d, ts_round)
sa_champions, sa_best, sa_t = SA.tsp_sa(city, d, sa_round)

# sa result
plot_champions(sa_champions)
plot_current_best(city, sa_best)
print("sa best", sa_best[0], "spend", sa_t, "round", sa_round)

# ts result
plot_champions(ts_champions)
plot_current_best(city, ts_best)
print("ts best", ts_best[0], "spend", ts_t, "round", ts_round)

# ga result
plot_champions(ga_champions)
plot_current_best(city, ga_best)
print("ga best", ga_best[0], "spend", ga_t, "round", ga_round)
コード例 #17
0
    if Track == []:
        f.write('FAIL')
        return 0
    else:
        f.write('OK')
        for i in range(n):
            f.write('\n')
            for j in range(n):
                if (i, j) in Track:
                    f.write('1')
                elif (i, j) in blocks:
                    f.write('2')
                else:
                    f.write('0')
        return 1


method, n, p, segments, blocks = init()
if len(segments) < p - n:
    Track = []
elif segments == [[]] and p > 0:
    Track = []
else:
    if method == 'DFS' or method == 'BFS':
        Track = Traverse.Traverse_Main(blocks, method, n, p, segments)
    elif method == 'SA':
        Track = SA.SA_Main(blocks, n, p, segments)
    else:
        Track = []
output(blocks, Track, n)
コード例 #18
0
ファイル: main.py プロジェクト: haleyrx/MVC_Algorithms
def main(graph, algo, cutoff, seed):
    random.seed(seed)

    graph_name = graph.split('/')[-1].split('.')[0]

    sol_file = "_".join([graph_name, algo, str(cutoff), str(seed)]) + '.sol'
    trace_file = "_".join([graph_name, algo,
                           str(cutoff),
                           str(seed)]) + '.trace'
    output_dir = './output/'  #'./{}_output/'.format(algo)

    start_time = time.time()

    # Create output directory if it does not exist
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    fo = open(os.path.join(output_dir, trace_file), 'w')

    if algo == 'BnB':
        if graph_name not in opt_cutoff:
            return

        G = BnB.parse_edges(graph)
        num_vc_nodes, vc = BnB.Branch_and_Bound(G, start_time, cutoff, fo,
                                                opt_cutoff[graph_name], seed)
        fo.close()

        total_time = round((time.time() - start_time), 5)
        print('BnB Algo Runtime: ' + str(total_time))

        with open(os.path.join(output_dir, sol_file), 'w') as f:
            f.write(str(num_vc_nodes) + "\n")
            f.write(','.join([str(n) for n in sorted(vc)]))
        f.close()

    if algo == 'SA':
        sa_obj = SA.SA()
        G, nV, nE = sa_obj.parse_edges(graph)

        G_init = G.copy()
        sol = sa_obj.initial_solution(G=G_init,
                                      fo=fo,
                                      start_time=start_time,
                                      cutoff=cutoff,
                                      input_file=graph)
        final_solution = sa_obj.simulate_annealing(
            G, fo, sol, cutoff, nV, start_time, graph,
            opt_cutoff.get(graph_name, 10))
        fo.close()
        print('SA Solution: ({}) {}'.format(len(final_solution),
                                            final_solution))

        total_time = round((time.time() - start_time), 5)
        print('SA Runtime (s): {}'.format(total_time))

        with open(os.path.join(output_dir, sol_file), 'w') as f:
            f.write(str(nV) + "\n")
            f.write(','.join([str(n) for n in sorted(final_solution)]))
        f.close()

    if algo == 'approx':
        G = approx.parse_edges(graph)
        num_vc_nodes, vc = approx.mdg(G, start_time, cutoff)

        total_time = round((time.time() - start_time), 5)
        print('Approx Algo Runtime: ' + str(total_time))

        with open(os.path.join(output_dir, sol_file), 'w') as f:
            f.write(str(num_vc_nodes) + "\n")
            f.write(','.join([str(n) for n in sorted(vc)]))
        f.close()

        with open(os.path.join(output_dir, trace_file), 'w') as f:
            f.write(' '.join([str(total_time), str(num_vc_nodes)]))
        f.close()

    if algo == 'GA':
        runner = GA.manual_runner(graph)

        pop_size = 3 * len(runner.graph.vert_dict)
        best_ind = runner.run_test(MU=pop_size,
                                   MUTPB=0.07,
                                   CXPB=0.8,
                                   NGEN=2000,
                                   verbose=False,
                                   cutoff=cutoff,
                                   trace_path=os.path.join(
                                       output_dir, trace_file),
                                   start=start_time)
        total_time = round((time.time() - start_time), 5)
        print('GA Runtime: ' + str(total_time))
        num_nodes = sum(best_ind)
        solution_vertices = runner.sorted_vertex_ids(best_ind)

        with open(os.path.join(output_dir, sol_file), 'w') as f:
            f.write(str(num_nodes) + "\n")
            f.write(','.join([str(n) for n in sorted(solution_vertices)]))

        with open(os.path.join(output_dir, trace_file), 'a') as f:
            f.write(','.join([str(total_time), str(num_nodes)]))
コード例 #19
0
        if opt == "--iter":
            iter = long(arg)
        if opt == "--reset":
            reset = long(arg)
        if opt == "--seed":
            seed = long(arg)
        if opt == "--freq":
            stat_freq = long(arg)
        if opt == "--steps":
            step_limit = int(arg)
        if opt == "--time":
            time_limit = int(arg)
        if opt == "--states":
            num_states = int(arg)
        if opt == "--symbols":
            num_symbols = int(arg)

    print "BB_Anneal_Accel.py --T0=%f --Tf=%f --iter=%d --reset=%d --seed=%s --freq=%d --steps=%d --time=%d --states=%d --symbols=%d" % \
          (T0,Tf,iter,reset,seed,stat_freq,step_limit,time_limit,num_states,num_symbols)
    print

    a = 1.0 / reset * (math.exp(math.pow(T0 / Tf, reset / float(iter))) -
                       math.e)
    print "a = ", a
    print

    tm_obj = TM_Object(num_states, num_symbols, step_limit, time_limit, seed)
    make_TMs = SA.SA(T0, Tf, a, tm_obj, reset, stat_freq, seed)

    (best_TM, best_energy, best_extra) = make_TMs.run()
コード例 #20
0
def predict_vm(ecs_infor_array, input_file_array):
    ## 确定最小日期,便于后面设定时间基数
    ID, flavor, y, s = ecs_infor_array[0].rstrip('\n').split()
    t = y + ' ' + s
    t = time.strptime(t, '%Y-%m-%d %H:%M:%S')
    initial_year = t.tm_year  # 历史数据中的第一组数据年份

    first = input_file_array[0].rstrip('\n').split()
    serve_cpu = int(first[0])
    serve_ram = int(first[1])
    vm_number = input_file_array[2].rstrip('\n')
    vm_number = int(vm_number)

    vm = []
    i = 3
    # while input_file_array[i] != '\n':
    while i < vm_number + 3:
        line = input_file_array[i]
        flavor, vm_cpu, vm_ram = line.rstrip('\n').split()
        flavor = int(flavor.strip('flavor'))
        vm_cpu = int(vm_cpu)
        vm_ram = int(vm_ram)
        vm.append([flavor, vm_cpu, vm_ram])
        i += 1
    vm_vector = []
    for item in vm:
        vm_vector.append(item[0])
    resource_type = input_file_array[i + 1].rstrip('\n')

    ## 预测时间(开始和结束)
    predict_begin, zero = input_file_array[i + 3].rstrip('\n').split()
    predict_begin = time.strptime(predict_begin, '%Y-%m-%d')
    predict_begin = predict_begin.tm_yday + 365 * (predict_begin.tm_year -
                                                   initial_year)
    predict_end, zero = input_file_array[i + 4].rstrip('\n').split()
    predict_end = time.strptime(predict_end, '%Y-%m-%d')
    predict_end = predict_end.tm_yday + 365 * (predict_end.tm_year -
                                               initial_year)
    delta_day = predict_end - predict_begin

    ##特殊节日
    #双十一
    d_0 = time.strptime('2015-11-11',
                        '%Y-%m-%d').tm_yday + 365 * (2015 - initial_year)
    d_1 = time.strptime('2015-10-01',
                        '%Y-%m-%d').tm_yday + 365 * (2015 - initial_year)
    d_2 = time.strptime('2015-12-25',
                        '%Y-%m-%d').tm_yday + 365 * (2015 - initial_year)
    d_3 = time.strptime('2016-02-07',
                        '%Y-%m-%d').tm_yday + 365 * (2016 - initial_year)
    d_4 = time.strptime('2016-10-01',
                        '%Y-%m-%d').tm_yday + 365 * (2016 - initial_year)
    d_5 = time.strptime('2016-11-11',
                        '%Y-%m-%d').tm_yday + 365 * (2016 - initial_year)
    d_6 = time.strptime('2016-12-25',
                        '%Y-%m-%d').tm_yday + 365 * (2016 - initial_year)
    d_7 = time.strptime('2017-01-27',
                        '%Y-%m-%d').tm_yday + 365 * (2017 - initial_year)
    d_8 = time.strptime('2017-10-01',
                        '%Y-%m-%d').tm_yday + 365 * (2017 - initial_year)
    d_9 = time.strptime('2017-11-11',
                        '%Y-%m-%d').tm_yday + 365 * (2017 - initial_year)
    d_10 = time.strptime('2017-12-25',
                         '%Y-%m-%d').tm_yday + 365 * (2017 - initial_year)
    ## 根据所有历史数据(天)的指数预测
    flag = 1
    for line in ecs_infor_array:
        line = line.rstrip('\n')  # 去除换行符
        ID, flavor, y, s = line.split()  # 将每一行的字符串按照空格分割开来
        t = y + ' ' + s
        t = time.strptime(t, '%Y-%m-%d %H:%M:%S')
        day_in2015 = t.tm_yday + 365 * (t.tm_year - initial_year)
        flavor = flavor.strip('flavor')  # 去除flavor字符,只保留数字
        flavor = int(flavor)
        ## 读取数据过程中,直接选取并叠加入X_test,形成一个长为vm_number的一维数组

        if vm_vector.count(flavor) != 0:  # 如果属于预测范围
            if flag == 1:
                initial_day = day_in2015  # 除了第一年的年份,第一组历史数据的天也为后续预测设置序列长度提供参考
                total_days = predict_begin - initial_day
                X = [[0 for i in range(total_days)] for j in range(vm_number)]
                flag = 0
            # if (predict_begin-7)<=day_in2015<predict_begin:
            X[vm_vector.index(
                flavor)][day_in2015 -
                         initial_day] += 1  #序号从零开始,大小还是vm_number*total_days
            # if X[vm_vector.index(flavor)][day_in2015 - initial_day]>30:
            #     X[vm_vector.index(flavor)][day_in2015 - initial_day]=0
    #print(X)
    ## 全用二阶指数平滑,参数统一设置
    #A=[0,0,0.9,0,0,0,0,0,0,0,0,0,0,0,0]
    # A=[0.15]*15
    # A = [float(x * 1) for x in A]
    # a=[]
    # for item in vm_vector:
    #     a.append(A[item-1])
    # print(a)
    # y_test=exp_smoothing.double_exp_smoothing(X,a,delta_day,vm_number,total_days)

    ## 初赛不存在flavor 3,4,6,7,10,12,13,14,15
    # 1,2,5,8,9,11

    y_test = []
    ## 噪声上限参数设置
    # 如果使用丢弃最后一个箱子的做法,可以考虑预测多一点,或者对噪声少控制一些
    # 值越小,阈值下限越低,滤去的噪声越多
    over_lie = 3.5  # 每一天的总数,占所有天平均数的多少倍,如果大于3倍,就认为这天是异常天。 每列相加,和所有列相加的平均比较
    over_ratio = 0.2  # 在天数异常的情况下,同时这个数据在flavor预测历史数据中要超过多少比率的flavor总数。 每个点数据,和每列总数的比例

    ## 二阶平滑参数设置
    # fix_a=0.1 ## 固定值
    # flavor1 = flavor2 = flavor3 = flavor4 = flavor5 = flavor6 = flavor7 = flavor8 =  flavor9 = flavor10 = flavor11 = flavor12 = flavor13 = flavor14 =flavor15 = fix_a

    ## 离散值 flavor越小,其占用资源越小
    flavor1 = 0.10  ##确定   因为其对后面的装箱影响比较小,所以可以预测多点 0.1-0.15
    flavor2 = 0.12  ##确定   0.1-0.15
    flavor3 = 0.2  ##      和flavor9类似 0.2-0.3
    flavor4 = 0.1  ##      特别平稳,个别突出0.1-0.2
    flavor5 = 0.05  ##确定   0.1-81.56重点关注,flavor可能预测数据刚好在密集区,所以一般可设置0.05-0.1
    flavor6 = 0.2  ##       0.2-0.25
    flavor7 = 0.2  ##       和flavor9类似
    flavor8 = 0.1  ##确定   敏感,0.1-0.15
    flavor9 = 0.3  ##确定   0.2-0.3分数区别不大,理论应该是0.2左右
    flavor10 = 0.2  ##       稀疏到没规律
    flavor11 = 0.1  ##确定
    flavor12 = 0.1  ##        和flavor1类似
    flavor13 = 0.2  ##        稀疏到没规律
    flavor14 = 0.2  ##        稀疏,波动大
    flavor15 = 0.2  ##        稀疏波动大
    ss = []
    for i in range(total_days):
        ss.append(sum([x[i] for x in X]))  #每天中所有flavor的总数
    for i in range(vm_number):
        ## 去噪处理,包括节日和异常点
        for j in range(total_days):  # 没什么影响1##
            # if vm_vector[i] == 8 and (j+initial_day==d_0 or j+initial_day==d_1 or
            #                           j+ initial_day==d_2 or j+initial_day==d_3 or j+ initial_day==d_4
            #                           or j+initial_day==d_5 or j+ initial_day==d_6):#j==d_0-1 or
            #     # X[i][j]=0
            #     X[i][j]=(X[i][j-1]+X[i][j+1]+X[i][j])/3
            #if sum([x[j] for x in X]) > over_lie*sum(ss)/total_days and X[i][j] > over_num * sum(X[i]) / total_days:#若某一天的总量特别大,则所有元素都缩小
            sum_flavor = sum([x[j] for x in X])  #各天的所有flavor请求量之和
            if sum_flavor > over_lie * sum(ss) / total_days and X[i][
                    j] / sum_flavor > over_ratio:  #定位哪个flavor异常,看其在异常天中的比例
                X[i][j] *= 0.8
                #X[i][j]=sum_flavor*over_ratio #0.2-82.27 0.5-83.866 0.3-82.0
            # if X[i][j] > over_num * sum(X[i]) / total_days:
            #     X[i][j] /= 2

        if vm_vector[i] == 1:
            # y_test.append(simple_predictor.double_exp_smoothing(X[i],0.13,delta_day,predict_begin, predict_end))
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor1,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 2:
            # y_test.append(simple_predictor.double_exp_smoothing(X[i],0.12,delta_day,predict_begin, predict_end))
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor2,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 5:
            # y_test.append(simple_predictor.combine(X[i],0.2,delta_day,total_days,predict_begin,predict_end,10))
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor5,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 8:
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor8,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 9:
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor9,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 11:
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor11,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 3:  ##例子不存在flavor3
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor3, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 4:  ##例子不存在flavor4
            #y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor4, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 6:  ##例子不存在flavor6
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor6, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 7:  ##例子不存在flavor7
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor7, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 10:  ##例子不存在flavor10
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor10, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 12:  ##例子不存在flavor12
            y_test.append(
                simple_predictor.double_exp_smoothing(X[i], flavor12,
                                                      delta_day))
            # y_test.append(simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 13:  ##例子不存在flavor13
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor13, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 14:  ##例子不存在flavor14
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor14, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

        elif vm_vector[i] == 15:  ##例子不存在flavor15
            # y_test.append(simple_predictor.double_exp_smoothing(X[i], flavor15, delta_day))
            y_test.append(
                simple_predictor.oneweek(X[i], predict_begin, predict_end))

    # y_test = []#
    # for item in range(vm_number):
    #    y_test.append(5)

    ## y_test表示按照预测顺序,每种flavor的数量
    print('y_test')
    print(y_test)
    flavor_total_number = sum(y_test)

    items = []
    for i in range(len(y_test)):
        if y_test[i] != 0:
            for j in range(y_test[i]):
                index_vm = vm_vector[i]
                items.append(index_vm)
    print('vm_vector')
    print(vm_vector)
    ## items表示把y_test中的标号表示出来,如果是多个就把标号多次打印
    print(items)
    ##
    items_w = []
    bin_height_cpu = serve_cpu
    bin_height_mem = serve_ram * 1024
    if resource_type == 'CPU':
        resource = 1
    else:
        resource = 2
    for it in items:
        items_w.append(
            [it, vm[vm_vector.index(it)][1], vm[vm_vector.index(it)][2]])
    ## items_w 表示给items加上资源属性,为分配做准备
    print(items_w)
    items_w.sort(key=lambda item_for_sort: item_for_sort[resource],
                 reverse=True)
    #print('排序后items_w')
    #print(items_w)
    first_fit_sort, min_goal = SA.sa(items_w, bin_height_cpu, bin_height_mem,
                                     resource)
    print('未修改最后一个箱子的SA')
    print(first_fit_sort)

    # th=0.01 # 越小表示,不去删数据,基本就是不对分配后进行干预
    th = 0.65  # 基本下调参数,分数就成比例下降,说明预测装箱的提升,相比于预测更重要。但高于0.7也就是分数降低了
    ## 对装箱后的资源进行再修改
    if 0 < (min_goal - min_goal // 1) < th:
        print('开始有点技巧地去掉最后一个箱子,修改预测值,来提高利用率')
        it = first_fit_sort.pop()
        print('未修改的items')
        print(items)
        for item in it:
            items.remove(item)
            xuhao = vm_vector.index(item)
            y_test[xuhao] -= 1
        print('更改后的items')
        print(items)

        print('更改后的y_test')
        print(y_test)

        result = [str(sum(y_test))]
        for i in range(len(y_test)):
            result.append('flavor' + str(vm_vector[i]) + ' ' + str(y_test[i]))
        result.append('')
        result.append(str(len(first_fit_sort)))
        for i in range(len(first_fit_sort)):
            temp = []
            first_fit_set = set(first_fit_sort[i])
            for item in first_fit_set:
                if temp:
                    temp = temp + ' flavor' + str(item) + ' ' + str(
                        first_fit_sort[i].count(item))
                else:
                    temp = str(i + 1) + ' flavor' + str(item) + ' ' + str(
                        first_fit_sort[i].count(item))
            result.append(temp)
            ## END ##
        return result

    else:  ## 原始输出
        result = [str(flavor_total_number)]
        for i in range(len(y_test)):
            result.append('flavor' + str(vm_vector[i]) + ' ' + str(y_test[i]))
        result.append('')
        result.append(str(len(first_fit_sort)))
        for i in range(len(first_fit_sort)):
            temp = []
            first_fit_set = set(first_fit_sort[i])
            for item in first_fit_set:
                if temp:
                    temp = temp + ' flavor' + str(item) + ' ' + str(
                        first_fit_sort[i].count(item))
                else:
                    temp = str(i + 1) + ' flavor' + str(item) + ' ' + str(
                        first_fit_sort[i].count(item))
            result.append(temp)
            ## END ##
        return result
コード例 #21
0
# Data Normalization
Xtrain = Xtrain.astype('float32')
Xvalid = Xvalid.astype('float32')
Xtrain /= 255
Xvalid /= 255
# -----------------------------------------------------

# Set hyper-parameters
learning_rate = 0.0001
epoch = 50
batch_size = 32

# SA Parameters
parameters = {
    'x_train': Xtrain,
    'y_train': Ytrain,
    'x_valid': Xvalid,
    'y_valid': Yvalid,
    'batch_size': batch_size,
    'learning_rate': learning_rate
}

# Start SA Algorithm
alg = sannealing.SA(**parameters)
alg.startAlgorithm()

## Outputs:
# model_history.txt: The loss and accuracy values (per epoch) of each model produced for training and validation are stored.
# models.txt: Store iteration number, model_no, #parameters, Flops, train accuracy, validation accuracy and model topology
# sau_sols.pickle: It stores information about solutions on the archive.
# *.json files: Stores information about the topology of solutions on the archive (Keras Model).
コード例 #22
0
ファイル: SAParameter.py プロジェクト: kyl27/Heuristics
import SA
import random

min_s = 0.0
max_s = 10.0
s_values = []
cost_values = []

# Set initial values
start = []
for i in range(20):
    start.append(random.uniform(min_s, max_s))
cost_s = SA.cost(start)

s_values.append(start)
cost_values.append(cost_s)
best_s = start
best_cost = cost_s

# Find other s_values and calculate their costs
while len(s_values) != 20:
    s = []
    for i in range(20):
        s.append(random.uniform(min_s, max_s))
    if s not in s_values:
        cost_s = SA.cost(s)
        if cost_s > best_cost:
            best_s = s
            best_cost = cost_s
        s_values.append(s)
        cost_values.append(cost_s)
コード例 #23
0
def pruebaSA(d,k):

    for i in range(5):
        SA.ejecutarSA(d,i,k)
コード例 #24
0
      sys.exit()
    if opt == "--T0":
      T0 = float(arg)
    if opt == "--Tf":
      Tf = float(arg)
    if opt == "--iter":
      iter = long(arg)
    if opt == "--reset":
      reset = long(arg)
    if opt == "--seed":
      seed = long(arg)
    if opt == "--freq":
      stat_freq = long(arg)
    if opt == "--m":
      m = int(arg)
    if opt == "--n":
      n = int(arg)

  print "Cube_Cube_Anneal.py --T0=%f --Tf=%f --iter=%d --reset=%d --seed=%s --freq=%d --m=%d --n=%d" % \
        (T0,Tf,iter,reset,seed,stat_freq,m,n)
  print

  a = 1.0/reset * (math.exp(math.pow(T0/Tf,reset/float(iter))) - math.e)
  print "a = ",a
  print

  cube_obj = Cube_Object(m,n,1.0,seed)
  make_cubes = SA.SA(T0,Tf,a,cube_obj,reset,stat_freq,seed)

  (best_cube,best_energy,best_extra) = make_cubes.run()
コード例 #25
0
                 [m.city[t[i]][1], m.city[t[i - 1]][1]])
    plt.plot(m.city[0][0], m.city[0][1], 'o')
    plt.plot([m.city[t[0]][0], m.city[t[m.N - 1]][0]],
             [m.city[t[0]][1], m.city[t[m.N - 1]][1]])
    st.pyplot(p4)
    st.text("最优顺序:")
    t
    st.text("最优值:{}".format(value))
    st.text("总迭代次数:{}".format(c))
    st.text("总时间:{}".format(time_end - time_start))
    p5 = plt.figure()
    plt.plot(res)
    st.pyplot(p5)
if st.button("SA3"):
    time_start = time.time()
    c, t, value, res = m3.SA()
    time_end = time.time()
    p6 = plt.figure()
    for i in range(1, m.N):
        plt.plot(m.city[i][0], m.city[i][1], 'o')
        plt.plot([m.city[t[i]][0], m.city[t[i - 1]][0]],
                 [m.city[t[i]][1], m.city[t[i - 1]][1]])
    plt.plot(m.city[0][0], m.city[0][1], 'o')
    plt.plot([m.city[t[0]][0], m.city[t[m.N - 1]][0]],
             [m.city[t[0]][1], m.city[t[m.N - 1]][1]])
    st.pyplot(p6)
    st.text("最优顺序:")
    t
    st.text("最优值:{}".format(value))
    st.text("总迭代次数:{}".format(c))
    st.text("总时间:{}".format(time_end - time_start))
コード例 #26
0
# Quality: Overall shortest tour found
# Route: Array of node_ids in order of travel [node_1,node_2,...]

if options.method == "BnB":
    branch = BranchAndBound.BranchAndBound(cities, options.cutoff)
    branch.main()
    quality = branch.minimum
    route = branch.bestSolution
    trace = branch.trace

elif options.method == "Approx":
    trace, quality, route = construction_heuristic.nearest_neighbor(
        params, cities, options.cutoff)
elif options.method == "LS1":
    s = SA.SimulatedAnnealing(
        cities,
        0.00001)  # the second argument is the cooling rate, default is 0.001.
    s.anneal(options.cutoff)
    quality = s.best_distance
    route = s.best_route
    trace = s.trace
elif options.method == "LS2":
    g = genetic.genetic(params, cities, options.cutoff)
    trace, quality, route = g.evolve()

#### ########## ####

print(quality)
for id in route:
    print(id, end=" ")
print("")
コード例 #27
0
#                            [4, 12, 3, 13], [10, 9, 6, 7], [5, 8, 13, 11], [5, 7, 9, 1]])
# print(MatrixWithSolution.Pos)
# print(MatrixWithSolution.FitnessPosSelf())
# print(MatrixWithSolution.FirstAxiom())
# print(MatrixWithSolution.ThirdAxiom())

#print('compare result',Matrix.CompareLines([1,2,4],[1,2,3]))

Curs = list()
Q = 3  # размерность плоскости
try_count = 0
last_iter_count = 0
while True:
    time_start = time.time()
    Matrix = SaMatrix.Matrix(Q)
    SaRun = SA.SA(Matrix)
    Curs.clear()
    try_count += 1
    iter_count = 0
    for n in range(100000):
        iter_count += 1
        if SaRun.T < 0.000001:
            break  #ограничение на нижнюю границу тепмпературы
        #print(n)
        cur = SaRun.Run()
        #print("current: ", Matrix.Pos)
        #print("temp: ", SaRun.T)
        Curs.append(Matrix.FitnessPosSelf())
        last_iter_count = n
        if cur == 0:
            print("N:", n)
コード例 #28
0
from SA import *

c=SA("ffield1.reax","params","Trainingfile.txt","Inputstructurefile.txt")
c.anneal()
print(c.costs)
print([c.sol_,c.cost_])
コード例 #29
0
print "Do you want to add your own file for inputs or let me create some random inputs"
print "press 1 for random otherwise enter your full file location"

s = raw_input()
n = 0

if s == "1":
    # creating random inputs
    print "enter the amount of inputs (preferrably close to 200)"
    n = input()
    input_data = np.random.randint(1000, size=(n, 2))

else:
    print "Input should be in the format as described in the Readme section"

    #fetching file from user's database
    with open(s) as f:
        for line in f:
            numbers_str = line.split()
            x = numbers_str[0]
            y = numbers_str[1]
            input_data.append((x, y))

final_arr = lib.sa_algorithm(input_data)
final_l = lib.total_length(final_arr, n)

print "minimum length using simulated annealing- "
print final_l
print "\nfinal order of coordinates to visit for near optimal solution--\n"
print final_arr
コード例 #30
0
f_2 = []
for i in list(range(len(f_1))):
    f_2.append((f_1[i] - average_f)**2)
f_2 = sum(f_2) / (len(f_2) - 1)
detal_0 = 6 * math.sqrt(f_2)

K = 3
T = [detal_0 * K]
M = 800
for i in list(range(M)):
    T.append(T[i] * 0.98)
f = open('SA.txt', 'a+')
f.write(str(T[0]))
for n in list(range(10)):
    x_0 = []
    x_0.append(random.random())
    x_0.append(random.random() * math.sqrt((1 - x_0[0]) / 2))
    x_0.append(random.random() * pow((1 - x_0[0] - 2 * x_0[1]**2) / 3, 1 / 3))
    x = []
    x.append(x_0)
    for i in list(range(len(T))):
        x.append(
            SA.iterative_inner(f=obf, x_0=x[i], g=supg, t_0=T[i],
                               iter_num=200))
        f.write('dat:' + str(x[i]) + '\n')
    f.write('coordinate:' + str(x[M]) + '\n')
    f.write('object:' + str(-obf(x[M])) + '\n')
    f.write('max:' + str(-obf([0.642, 0.3964, 0.302])) +
            '\n---------------------\n')
f.close()
コード例 #31
0
            houseList.append(Class.Maison(tuple[0], tuple[1]))
    return houseList

def decoder(houseList):
    decodedList = []
    for house in houseList:
        tempList = []
        tempList.extend((house.x, house.y, house.freespace, house.width, house.height))
        decodedList.append(tempList)
    return str(decodedList)

def encoder(decodedList):
    houseList = []
    for list in decodedList:
        if list[2] == 2:
            single = Class.SingleHouse(list[0],list[1])
            houseList.append(single)
        elif list[2] == 3:
            bunga = Class.Bungalow(list[0],list[1])
            houseList.append(bunga)
        elif list[2] == 6:
            maison = Class.Maison(list[0],list[1])
            houseList.append(maison)
        elif list[2] == 0:
            water = Class.Water(list[0], list[1], list[3], list[4], 0)
            houseList.append(water)
    return houseList

p = encoder([[17, 17, 0, 38, 38], [105, 17, 0, 38, 38], [17, 125, 0, 38, 38], [105, 125, 0, 38, 38], [6, 6, 6, 11, 10.5], [143, 163.5, 6, 11, 10.5], [143, 6, 6, 11, 10.5], [123, 100, 3, 10, 7.5], [20, 87, 3, 10, 7.5], [78, 163, 3, 10, 7.5], [90, 108, 3, 10, 7.5], [50, 105, 3, 10, 7.5], [76, 3, 2, 8, 8], [74, 38, 2, 8, 8], [46, 72, 2, 8, 8], [28, 106, 2, 8, 8], [76, 130, 2, 8, 8], [117, 76, 2, 8, 8], [77, 105, 2, 8, 8], [54, 83, 2, 8, 8], [91, 120, 2, 8, 8], [74, 72, 2, 8, 8], [6, 117, 2, 8, 8], [36, 166, 2, 8, 8]])
values, climbed = SA.SA(SA.exponentialCooling, 50000, 1000, p, 20, 10000, 20, True, True)
コード例 #32
0
def train(FIS_name,
          data,
          target_col,
          mf,
          Ncentroids,
          overlap,
          alpha=0.5,
          iterations=50,
          sa=False,
          sa_plot=False):
    '''
	Trains a FIS, writes all the properties of this FIS to a FIS file
	using the write function.

	Inputs: 
		data: nummpy array of size > number of centroids x 2
		target_col: integer index of the target column
		Ncentroids: either an integer (for each feature te same)
	          or an array size = number of features
		mf:  'triangle', 'trapezoid' or 'Gaussian'
		overlap: number between 0 and 1, 
					when gaussian mf overlap is the variance
					when triangle/trapezoid overlap is half of the base 
		iterations: number of iterations for the simulated annealing

	Outputs:
		RB: list of lists of integer rules
		target_centroids: list with scaled target centroids
		feature_centroids: the other feature centroids
	'''
    # scale the data
    data, min_x, max_x = scale(data)
    # get centroids
    centroids = cluster(data, target_col, Ncentroids, plot=False)
    # learn WM rules
    RB = WM.learn(data, centroids, overlap, mf, target_col)
    # return everything needed for testing
    target_centroids = centroids[target_col]
    # delete target centroid for testing
    feature_centroids = np.delete(centroids, target_col, 0)
    # delete target values for testing
    targets = data[:, target_col]
    data = np.delete(data, target_col, 1)
    method = 'WM'
    # for simulated annealing, get the new rule base
    if sa:
        method = 'WM+SA'
        RB = SA.search(data,
                       targets,
                       RB,
                       alpha,
                       feature_centroids,
                       overlap,
                       mf,
                       target_centroids,
                       min_x[target_col],
                       max_x[target_col],
                       plot=sa_plot,
                       iterations=iterations)
    # Write FIS file in the format:
    # FIS_name.FIS
    with open(FIS_name + '.FIS', "w") as fis_file:
        write(fis_file, method, mf, overlap, target_centroids,
              feature_centroids, RB)