def selector(algo,func_details,popSize,Iter,succ_rate,mean_feval): function_name=func_details[0] lb=func_details[1] ub=func_details[2] dim=func_details[3] acc_err=func_details[4] obj_val=func_details[5] if(algo==0): x,succ_rate,mean_feval=smo.main(getattr(benchmarks, function_name),lb,ub,dim,popSize,Iter,acc_err,obj_val,succ_rate,mean_feval) return x,succ_rate,mean_feval
def selector(algo,func_details,popSize,Iter,succ_rate,mean_feval): function_name=func_details[0] lb=func_details[1] ub=func_details[2] dim=func_details[3] acc_err=func_details[4] obj_val=func_details[5] #selection of different parameters if(algo==0): x,succ_rate,mean_feval=smo.main(getattr(benchmarks, function_name),lb,ub,dim,popSize,Iter,acc_err,obj_val,succ_rate,mean_feval) #getting attributes from different file return x,succ_rate,mean_feval
def selector(algo, func_details, popSize, Iter, trainDataset, testDataset): function_name = func_details[0] lb = func_details[1] ub = func_details[2] DatasetSplitRatio = 2 / 3 dataTrain = "datasets/" + trainDataset dataTest = "datasets/" + testDataset Dataset_train = numpy.loadtxt(open(dataTrain, "rb"), delimiter=",", skiprows=0) Dataset_test = numpy.loadtxt(open(dataTest, "rb"), delimiter=",", skiprows=0) numRowsTrain = numpy.shape(Dataset_train)[ 0] # number of instances in the train dataset numInputsTrain = numpy.shape( Dataset_train)[1] - 1 #number of features in the train dataset numRowsTest = numpy.shape(Dataset_test)[ 0] # number of instances in the test dataset numInputsTest = numpy.shape( Dataset_test)[1] - 1 #number of features in the test dataset trainInput = Dataset_train[0:numRowsTrain, 0:-1] trainOutput = Dataset_train[0:numRowsTrain, -1] testInput = Dataset_test[0:numRowsTest, 0:-1] testOutput = Dataset_test[0:numRowsTest, -1] #number of hidden neurons HiddenNeurons = numInputsTrain * 2 + 1 net = nl.net.newff([[0, 1]] * numInputsTrain, [HiddenNeurons, 1]) dim = (numInputsTrain * HiddenNeurons) + (2 * HiddenNeurons) + 1 if (algo == 0): x = pso.PSO(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, trainInput, trainOutput, net) if (algo == 1): x = mvo.MVO(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, trainInput, trainOutput, net) if (algo == 2): x = gwo.GWO(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, trainInput, trainOutput, net) if (algo == 3): x = mfo.MFO(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, trainInput, trainOutput, net) if (algo == 4): x = cs.CS(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, trainInput, trainOutput, net) if (algo == 5): x = bat.BAT(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, trainInput, trainOutput, net) if (algo == 6): x = smo.main(getattr(costNN, function_name), lb, ub, dim, popSize, Iter, 1.0e-5, trainInput, trainOutput, net) # print(type(x),'------------------------------') # Evaluate MLP classification model based on the training set trainClassification_results = evalNet.evaluateNetClassifier( x, trainInput, trainOutput, net) x.trainAcc = trainClassification_results[0] x.trainTP = trainClassification_results[1] x.trainFN = trainClassification_results[2] x.trainFP = trainClassification_results[3] x.trainTN = trainClassification_results[4] # Evaluate MLP classification model based on the testing set testClassification_results = evalNet.evaluateNetClassifier( x, testInput, testOutput, net) x.testAcc = testClassification_results[0] x.testTP = testClassification_results[1] x.testFN = testClassification_results[2] x.testFP = testClassification_results[3] x.testTN = testClassification_results[4] return x