def generateBestSolution(initial_population,ordered_fitness_list,max_iterations): iteration = 0 while iteration < max_iterations: iteration = iteration + 1 gift_mutation = random.random() best_solution_index = ordered_fitness_list[0][0] best_solution_cost = ordered_fitness_list[0][1] count = 0 while count <= 10: count = count + 1 if gift_mutation >= GIFT_MUTATION_PROBABILITY: gene_index = random.randint(len(initial_population)-TOP_K-1,len(initial_population)-1) chosen_trip_index = ordered_fitness_list[gene_index][0] chosen_trip_list = initial_population[chosen_trip_index] index,chosen_trip = SantaUtil.maximumTripCost(chosen_trip_list) swapped_gift_list = SantaUtil.mutateGiftList(chosen_trip.gift_list) temp_trip_cost = SantaUtil.tripCost(swapped_gift_list) if temp_trip_cost < chosen_trip.trip_cost: chosen_trip.gift_list = swapped_gift_list initial_population[chosen_trip_index] = chosen_trip ordered_fitness_list = SantaUtil.sortPopulationByFitness(initial_population) if gift_mutation < GIFT_MUTATION_PROBABILITY: gene_index = random.randint(0,TOP_K+1) chosen_trip_index = ordered_fitness_list[gene_index][0] chosen_trip_list = initial_population[chosen_trip_index] index,chosen_trip = SantaUtil.maximumTripCost(chosen_trip_list) swapped_gift_list = SantaUtil.mutateGiftList(chosen_trip.gift_list) temp_trip_cost = SantaUtil.tripCost(swapped_gift_list) if temp_trip_cost < chosen_trip.trip_cost: chosen_trip.gift_list = swapped_gift_list initial_population[chosen_trip_index] = chosen_trip ordered_fitness_list = SantaUtil.sortPopulationByFitness(initial_population) return best_solution_index,best_solution_cost
total_weight = 0 gift_trip_list = list([]) trip_list.append(trip_order) count = count+1 master_trip_population.append(trip_list) return master_trip_population print "Starting Generating Initial Population...." start = time.time() initial_population = generateInitialTripListPopulation(gift_list,INTIAL_POPULATION_SIZE) end = time.time() print "Total Time Taken for Creating Initial Pool : ",end-start ordered_fitness_list = SantaUtil.sortPopulationByFitness(initial_population) best_solution_index = ordered_fitness_list[0][0] best_solution_cost = ordered_fitness_list[0][1] """ Generates the best solution from the initial population by using elitist policy and mutation operator on the order of gifts Params: -------- initial_population: List containing the list of initial seed genes ordered_fitness_list: List containing the sorted tuples of the initial_population sorted by fitness max_iterations: The maximum number of iterations to run before convergence Returns: --------