コード例 #1
0
def plot_ref_genome(ref_placements,cycle,total_length,segSeqD,imputed_status,label_segs,onco_set=set()):
    font0 = FontProperties()
    rot_sp = global_rot/360.*total_length
    for ind,refObj in ref_placements.iteritems():
        seg_coord_tup = segSeqD[cycle[ind][0]]
        # print(refObj.to_string())
        start_angle, end_angle = start_end_angle(refObj.abs_end_pos,refObj.abs_start_pos,total_length)
        # print start_angle,end_angle
        
        #makes the reference genome wedges    
        patches.append(mpatches.Wedge((0,0), outer_bar, end_angle, start_angle, width=bar_width))
        chrom = segSeqD[cycle[ind][0]][0]
        f_color_v.append(chromosome_colors[chrom])
        e_color_v.append('grey')
        lw_v.append(0.2)
        
        #makes the ticks on the reference genome wedges
        if cycle[ind][1] == "+":
            # posns = zip(range(seg_coord_tup[1],seg_coord_tup[2]+1),np.arange(refObj.abs_end_pos,refObj.abs_start_pos,-1))
            posns = zip(range(seg_coord_tup[1],seg_coord_tup[2]+1),np.arange(refObj.abs_start_pos,refObj.abs_end_pos))
        else:
            # posns = zip(np.arange(seg_coord_tup[2],seg_coord_tup[1]-1,-1),np.arange(refObj.abs_end_pos,refObj.abs_start_pos,-1))
            posns = zip(np.arange(seg_coord_tup[2],seg_coord_tup[1]-1,-1),np.arange(refObj.abs_start_pos,refObj.abs_end_pos))

        tick_freq = max(30000,30000*int(np.floor(total_length/1000000)))
        if refObj.abs_end_pos-refObj.abs_start_pos < 30000:
            tick_freq = 10000
        for j in posns:
            if j[0] % tick_freq == 0:
                text_angle = j[1]/total_length*360
                x,y = pol2cart(outer_bar,(text_angle/360*2*np.pi))
                x_t,y_t = pol2cart(outer_bar + 0.2,(text_angle/360*2*np.pi))
                ax.plot([x,x_t],[y,y_t],color='grey',linewidth=1)
                
                text_angle,ha = vu.correct_text_angle(text_angle)
                txt = " " + str(int(round((j[0])/10000))) if ha == "left" else str(int(round((j[0])/10000))) + " "

                ax.text(x_t,y_t,txt,color='grey',rotation=text_angle,
                ha=ha,va="center",fontsize=9,rotation_mode='anchor')
    
        gene_tree = vu.parse_genes(seg_coord_tup[0],args.ref)
        relGenes = vu.rel_genes(gene_tree,seg_coord_tup,copy.copy(onco_set))
        #plot the gene track
        plot_gene_track(refObj.abs_start_pos,relGenes,seg_coord_tup,total_length,cycle[ind][1])

        #label the segments by number in cycle
        mid_sp = (refObj.abs_end_pos + refObj.abs_start_pos)/2
        text_angle = mid_sp/total_length*360.
        x,y = pol2cart((outer_bar-2*bar_width),(text_angle/360.*2.*np.pi))
        font = font0.copy()
        if imputed_status[ind]:
            font.set_style('italic')
            # font.set_weight('bold')

        text_angle,ha = vu.correct_text_angle(text_angle)

        if label_segs:
            ax.text(x,y,cycle[ind][0]+cycle[ind][1],color='grey',rotation=text_angle,
                ha=ha,fontsize=5,fontproperties=font,rotation_mode='anchor')
コード例 #2
0
def plot_cmap_track(seg_placements, total_length, unadj_bar_height, color, seg_id_labels=False):
    cycle_label_locs = defaultdict(list)
    for ind, segObj in seg_placements.items():
        bar_height = unadj_bar_height + segObj.track_height_shift
        print("cmap_plot", segObj.id)
        start_angle, end_angle = start_end_angle(segObj.abs_end_pos, segObj.abs_start_pos, total_length)
        patches.append(mpatches.Wedge((0, 0), bar_height + bar_width, end_angle, start_angle, width=bar_width))
        f_color_v.append(color)
        e_color_v.append('k')
        lw_v.append(0)

        linewidth = min(0.25 * 2000000 / total_length, 0.25)
        for i in segObj.label_posns:
            if i > segObj.abs_end_pos or i < segObj.abs_start_pos:
                continue

            label_rads = i / total_length * 2 * np.pi
            x, y = vu.pol2cart(bar_height, label_rads)
            x_t, y_t = vu.pol2cart(bar_height + bar_width, label_rads)
            # linewidth = min(0.2*2000000/total_length,0.2)
            ax.plot([x, x_t], [y, y_t], color='k', alpha=0.9, linewidth=linewidth)

        if seg_id_labels:
            mid_sp = (segObj.abs_end_pos + segObj.abs_start_pos) / 2
            text_angle = mid_sp / total_length * 360.
            x, y = vu.pol2cart(bar_height - 1.2, (text_angle / 360. * 2. * np.pi))
            text_angle, ha = vu.correct_text_angle(text_angle)
            text = segObj.id + segObj.direction
            ax.text(x, y, text, color='grey', rotation=text_angle,
                    ha=ha, fontsize=5, rotation_mode='anchor')

    return cycle_label_locs
コード例 #3
0
def plot_gene_track(currStart, relGenes, pTup, total_length, strand):
    for ind,i in enumerate(relGenes):
        truncStart = False
        truncEnd = False
        #e_posns is a list of tuples of exon (start,end)
        #these can be plotted similarly to how the coding region is marked
        tstart,tend,e_posns = relGenes[i]
        seg_len = pTup[2] - pTup[1]
        if strand == "+":
            normStart = currStart + max(0,tstart-pTup[1])
            normEnd = currStart + min(seg_len,tend-pTup[1])
        else:
            normEnd = currStart + min(seg_len,pTup[2]-tstart)
            normStart = currStart + max(0,pTup[2] - tend)

        # print max(0,tstart-pTup[1]),min(seg_len,tend-pTup[1]),seg_len
        # print i,normStart,normEnd, currStart, currStart+seg_len,tstart,tend,strand

        start_angle = normStart/total_length*360
        end_angle = normEnd/total_length*360
        text_angle = (start_angle + end_angle)/2.0
        gene_to_locations[i].append((start_angle/360.,end_angle/360.))
        if end_angle < 0 and start_angle > 0:
            end_angle+=360
        
        patches.append(mpatches.Wedge((0,0), outer_bar, start_angle, end_angle, width=bar_width/2.0))
        f_color_v.append('k')
        e_color_v.append('k')
        lw_v.append(0)

        # x,y = pol2cart(outer_bar+(bar_width/2.0),(text_angle/360*2*np.pi))
        x_t,y_t = pol2cart(outer_bar + bar_width + 2,(text_angle/360*2*np.pi))
        #ax.plot([x,x_t],[y,y_t],color='grey',linewidth=0.4)
        
        text_angle,ha = vu.correct_text_angle(text_angle)
        ax.text(x_t,y_t,i,color='k',rotation=text_angle,ha=ha,va="center",fontsize=9,rotation_mode='anchor')

        for exon in e_posns:
            if exon[1] > pTup[1] and exon[0] < pTup[2]:
                if strand == "+":
                    normStart = currStart + max(1,exon[0]-pTup[1])
                    normEnd = currStart + min(pTup[2]-pTup[1],exon[1]-pTup[1])

                else:
                    normEnd = currStart + min(pTup[2]-pTup[1],pTup[2]-exon[0])
                    normStart = currStart + max(1,pTup[2] - exon[1])

                start_angle, end_angle = start_end_angle(normStart,normEnd,total_length)
                patches.append(mpatches.Wedge((0,0), outer_bar-bar_width/2.0, start_angle, end_angle, width=bar_width/2.0))
                f_color_v.append('k')
                e_color_v.append('k')
                lw_v.append(0)
コード例 #4
0
def plot_gene_track(currStart, currEnd, relGenes, pTup, total_length, seg_dir):
    overlap_genes.append({})
    for gObj in relGenes:
        # e_posns is a list of tuples of exon (start,end)
        # these can be plotted similarly to how the coding region is marked
        gname, gstart, gend, e_posns = gObj.gname, gObj.gstart, gObj.gend, gObj.eposns
        seg_len = pTup[2] - pTup[1]
        if seg_dir == "+":
            normStart = currStart + max(0, gstart - pTup[1])
            normEnd = currStart + min(seg_len, gend - pTup[1])
        else:
            normEnd = currStart + min(seg_len, pTup[2] - gstart)
            normStart = currStart + max(0, pTup[2] - gend)

        start_angle = normStart / total_length * 360
        end_angle = normEnd / total_length * 360
        text_angle = (start_angle + end_angle) / 2.0
        gene_to_locations[gname].append((start_angle / 360., end_angle / 360.))
        if end_angle < 0 and start_angle > 0:
            end_angle += 360

        patches.append(
            mpatches.Wedge((0, 0),
                           outer_bar,
                           start_angle,
                           end_angle,
                           width=bar_width / 2.0))
        f_color_v.append('k')
        e_color_v.append('k')
        lw_v.append(0)

        x_t, y_t = pol2cart(outer_bar + bar_width + 2,
                            (text_angle / 360 * 2 * np.pi))
        # Use filtering from LinearViz to control which names are printed:
        '''
        if i not in plotted_gene_names or args.print_dup_genes:
            print i
        '''
        text_angle, ha = vu.correct_text_angle(text_angle)
        if gname not in overlap_genes[len(overlap_genes) -
                                      2] or gstart > overlap_genes[
                                          len(overlap_genes) - 2].get(gname):
            ax.text(x_t,
                    y_t,
                    gname,
                    style='italic',
                    color='k',
                    rotation=text_angle,
                    ha=ha,
                    va="center",
                    fontsize=gene_fontsize,
                    rotation_mode='anchor')

        if currEnd < gend:
            overlap_genes[len(overlap_genes) - 1][gname] = gend

        for exon in e_posns:
            if exon[1] > pTup[1] and exon[0] < pTup[2]:
                if seg_dir == "+":
                    normStart = currStart + max(1, exon[0] - pTup[1])
                    normEnd = currStart + min(pTup[2] - pTup[1],
                                              exon[1] - pTup[1])

                else:
                    normEnd = currStart + min(pTup[2] - pTup[1],
                                              pTup[2] - exon[0])
                    normStart = currStart + max(1, pTup[2] - exon[1])

                start_angle, end_angle = start_end_angle(
                    normStart, normEnd, total_length)
                patches.append(
                    mpatches.Wedge((0, 0),
                                   outer_bar - bar_width / 2.0,
                                   start_angle,
                                   end_angle,
                                   width=bar_width / 2.0))
                f_color_v.append('k')
                e_color_v.append('k')
                lw_v.append(0)
コード例 #5
0
def plot_ref_genome(ref_placements,
                    cycle,
                    total_length,
                    segSeqD,
                    imputed_status,
                    label_segs,
                    onco_set=set()):
    font0 = FontProperties()
    p_end = 0
    # rot_sp = global_rot / 360. * total_length
    for ind, refObj in ref_placements.items():
        seg_coord_tup = segSeqD[cycle[ind][0]]
        # print(refObj.to_string())
        start_angle, end_angle = start_end_angle(refObj.abs_end_pos,
                                                 refObj.abs_start_pos,
                                                 total_length)
        # print start_angle,end_angle

        # makes the reference genome wedges
        patches.append(
            mpatches.Wedge((0, 0),
                           outer_bar,
                           end_angle,
                           start_angle,
                           width=bar_width))
        chrom = segSeqD[cycle[ind][0]][0]
        try:
            f_color_v.append(chromosome_colors[chrom])
        except KeyError:
            print("Color not found for " + chrom + ". Using red.")
            chromosome_colors[chrom] = "red"
            f_color_v.append("red")

        e_color_v.append('grey')
        lw_v.append(0.2)

        # makes the ticks on the reference genome wedges
        if cycle[ind][1] == "+":
            posns = zip(range(seg_coord_tup[1], seg_coord_tup[2] + 1),
                        np.arange(refObj.abs_start_pos, refObj.abs_end_pos))
        else:
            posns = zip(np.arange(seg_coord_tup[2], seg_coord_tup[1] - 1, -1),
                        np.arange(refObj.abs_start_pos, refObj.abs_end_pos))

        tick_freq = max(10000, 30000 * int(np.floor(total_length / 800000)))
        #if refObj.abs_end_pos - refObj.abs_start_pos < 30000:
        #tick_freq = 25000

        # if there are no labels present on the segment given the current frequency, AND this refobject is not adjacent
        # to the previous, get positions in this segment divisible by 10kbp, set the middle one as the labelling site
        # else just set it to 10000
        if (not any(j[0] % tick_freq == 0
                    for j in posns)) and abs(refObj.abs_start_pos - p_end) > 1:
            tens = [j[0] for j in posns if j[0] % 10000 == 0]
            middleIndex = (len(tens) - 1) / 2
            if tens:
                tick_freq = tens[middleIndex]
            else:
                tick_freq = 10000

        p_end = refObj.abs_end_pos

        print("tick freq", tick_freq)
        for j in posns:
            if j[0] % tick_freq == 0:
                text_angle = j[1] / total_length * 360
                x, y = pol2cart(outer_bar, (text_angle / 360 * 2 * np.pi))
                x_t, y_t = pol2cart(outer_bar + 0.2,
                                    (text_angle / 360 * 2 * np.pi))
                ax.plot([x, x_t], [y, y_t], color='grey', linewidth=1)

                text_angle, ha = vu.correct_text_angle(text_angle)
                txt = " " + str(int(round(
                    (j[0]) / 10000))) if ha == "left" else str(
                        int(round((j[0]) / 10000))) + " "

                ax.text(x_t,
                        y_t,
                        txt,
                        color='grey',
                        rotation=text_angle,
                        ha=ha,
                        va="center",
                        fontsize=tick_fontsize,
                        rotation_mode='anchor')

        # gene_tree = vu.parse_genes(seg_coord_tup[0], args.ref)
        relGenes = vu.rel_genes(gene_tree, seg_coord_tup, copy.copy(onco_set))
        # plot the gene track
        plot_gene_track(refObj.abs_start_pos, refObj.abs_end_pos, relGenes,
                        seg_coord_tup, total_length, cycle[ind][1])

        # label the segments by number in cycle
        mid_sp = (refObj.abs_end_pos + refObj.abs_start_pos) / 2
        text_angle = mid_sp / total_length * 360.
        x, y = pol2cart((outer_bar - 2 * bar_width),
                        (text_angle / 360. * 2. * np.pi))
        font = font0.copy()
        if imputed_status[ind]:
            font.set_style('italic')
            # font.set_weight('bold')

        text_angle, ha = vu.correct_text_angle(text_angle)

        if label_segs:
            ax.text(x,
                    y,
                    cycle[ind][0] + cycle[ind][1],
                    color='grey',
                    rotation=text_angle,
                    ha=ha,
                    fontsize=5,
                    fontproperties=font,
                    rotation_mode='anchor')
コード例 #6
0
def plot_gene_track(currStart, currEnd, relGenes, pTup, total_length, seg_dir, ind, plot_gene_direction=True):
    overlap_genes.append({})
    for gObj in relGenes:
        # e_posns is a list of tuples of exon (start,end)
        # these can be plotted similarly to how the coding region is marked
        gname, gstart, gend, e_posns = gObj.gname, gObj.gstart, gObj.gend, gObj.eposns
        # print(gname, gstart, gend, pTup, len(gObj.gdrops))
        seg_len = pTup[2] - pTup[1]
        hasStart = False
        hasEnd = False
        if seg_dir == "+":
            ts = max(0, gstart - pTup[1])
            te = min(seg_len, gend - pTup[1])
            if gObj.strand == "+":
                drop = 1.4 * bar_width
                if ts > 0: hasStart = True
                if te < seg_len: hasEnd = True
            else:
                drop = 2 * bar_width
                if ts > 0: hasEnd = True
                if te < seg_len: hasStart = True

            normStart = currStart + max(0, gstart - pTup[1])
            normEnd = currStart + min(seg_len, gend - pTup[1])

        else:
            te = min(seg_len, pTup[2] - gstart)
            ts = max(0, pTup[2] - gend)
            if gObj.strand == "+":
                drop = 2 * bar_width
                if te < seg_len: hasStart = True
                if ts > 0: hasEnd = True
            else:
                drop = 1.4 * bar_width
                if te < seg_len: hasEnd = True
                if ts > 0: hasStart = True

            normEnd = currStart + min(seg_len, pTup[2] - gstart)
            normStart = currStart + max(0, pTup[2] - gend)

        start_angle = normStart / total_length * 360
        end_angle = normEnd / total_length * 360
        text_angle = (start_angle + end_angle) / 2.0
        gene_to_locations[gname].append((start_angle / 360., end_angle / 360.))
        if end_angle < 0 and start_angle > 0:
            end_angle += 360

        patches.append(mpatches.Wedge((0, 0), outer_bar, start_angle, end_angle, width=bar_width / 2.0))
        f_color_v.append('k')
        e_color_v.append('k')
        lw_v.append(0)

        if gname not in overlap_genes[len(overlap_genes)-2] or gstart > overlap_genes[len(overlap_genes)-2].get(gname)[0]\
                or seg_dir != overlap_genes[len(overlap_genes)-2].get(gname)[1]:
            x_t, y_t = vu.pol2cart(outer_bar + bar_width + 1.7, (text_angle / 360 * 2 * np.pi))
            text_angle, ha = vu.correct_text_angle(text_angle)

            if gObj.highlight_name:
                ax.text(x_t, y_t, gname, style='italic', color='r', rotation=text_angle, ha=ha, va="center",
                        fontsize=gene_fontsize, rotation_mode='anchor')
            else:
                ax.text(x_t, y_t, gname, style='italic', color='k', rotation=text_angle, ha=ha, va="center",
                        fontsize=gene_fontsize, rotation_mode='anchor')

        # draw something to show direction and truncation status
        if plot_gene_direction:
            plot_gene_direction_indicator(normStart, normEnd, drop)
            gObj.gdrops.append((normStart, normEnd, total_length, seg_dir, currStart, currEnd, hasStart, hasEnd, ind, drop, pTup))
            # gObj.gdrops = [(normStart, normEnd, total_length, seg_dir, currStart, currEnd, pTup), ]

        if currEnd < gend:
            overlap_genes[len(overlap_genes)-1][gname] = (gend, seg_dir)

        for exon in e_posns:
            #fix exon orientation
            if exon[1] > pTup[1] and exon[0] < pTup[2]:
                if seg_dir == "+":
                    normStart = currStart + max(1, exon[0] - pTup[1])
                    normEnd = currStart + min(pTup[2] - pTup[1], exon[1] - pTup[1])

                else:
                    normEnd = currStart + min(pTup[2] - pTup[1], pTup[2] - exon[0])
                    normStart = currStart + max(1, pTup[2] - exon[1])

                start_angle, end_angle = start_end_angle(normStart, normEnd, total_length)
                patches.append(
                    mpatches.Wedge((0, 0), outer_bar - bar_width / 2.0, start_angle, end_angle, width=bar_width / 2.0))
                f_color_v.append('k')
                e_color_v.append('k')
                lw_v.append(0)