odds_site = "http://espn.go.com/nba/lines" team_data1_labels = ['rank','games','wins','losses','win_loss_per','mp','fg','fga','two_p','two_pa','three_p', 'three_pa','ft','fta','orb','drb','trb','ast','stl','blk','tov','pf','pts'] team_data2_labels = ['rank','games','wins','losses','win_loss_per','mov','sos','srs','pace','ortg','drtg','efg_per', 'tov_per','orb_per','ft_fga','efg_per_opp','tov_per_opp','orb_per_opp','ft_fga_opp'] player_data1_labels = ['rank','age','games','games_started','min_played','fg','fga','two_p','two_pa','three_p', 'three_pa','ft','fta','orb','drb','trb','ast','stl','blk','tov','pf','pts','fg_per', 'two_p_per','three_p_per','ft_per'] player_data2_labels = ['rank','age','games','games_started','min_played','per','ts_per','efg_per','orb_per','drb_per', 'trb_per','ast_per','stl_per','blk_per','tov_per','usg_per','ortg2','drtg2','ows','dws','ws', 'ws_48','fg_per','two_p_per','three_p_per','ft_per'] logging.info('Performing Web-scrapes') team_data1 = Webstats_Funs.get_stats(site=team_site1) team_data1['update_date'] = today team_data2 = Webstats_Funs.get_stats(site=team_site2) team_data2['update_date'] = today player_data1 = Webstats_Funs.get_stats(site=player_site1, paginate=True) player_data1['update_date'] = today player_data2 = Webstats_Funs.get_stats(site=player_site2, paginate=True) player_data2['update_date'] = today health_data = Webstats_Funs.get_injury_list(site=health_site) health_data['update_date'] = today schedule_data = Webstats_Funs.get_schedule(site=schedule_site) schedule_data['update_date'] = today odds_data = Webstats_Funs.get_lines(odds_site) odds_data['update_date'] = today ######
player_data1_labels = [ 'rank', 'age', 'games', 'games_started', 'min_played', 'fg', 'fga', 'two_p', 'two_pa', 'three_p', 'three_pa', 'ft', 'fta', 'orb', 'drb', 'trb', 'ast', 'stl', 'blk', 'tov', 'pf', 'pts', 'fg_per', 'two_p_per', 'three_p_per', 'ft_per' ] player_data2_labels = [ 'rank', 'age', 'games', 'games_started', 'min_played', 'per', 'ts_per', 'efg_per', 'orb_per', 'drb_per', 'trb_per', 'ast_per', 'stl_per', 'blk_per', 'tov_per', 'usg_per', 'ortg2', 'drtg2', 'ows', 'dws', 'ws', 'ws_48', 'fg_per', 'two_p_per', 'three_p_per', 'ft_per' ] logging.info('Performing Web-scrapes') team_data1 = Webstats_Funs.get_team_stats(site=team_site1, headers=team_data1_labels) team_data1['update_date'] = today team_data2 = Webstats_Funs.get_team_stats(site=team_site2, headers=team_data2_labels) team_data2['update_date'] = today player_data1 = Webstats_Funs.get_player_stats(site=player_site1, headers=player_data1_labels) player_data1['update_date'] = today player_data2 = Webstats_Funs.get_player_stats(site=player_site2, headers=player_data2_labels) player_data2['update_date'] = today health_data = Webstats_Funs.get_injury_list(site=health_site) health_data['update_date'] = today schedule_data = Webstats_Funs.get_schedule(site=schedule_site) schedule_data['update_date'] = today odds_data = Webstats_Funs.get_lines(odds_site)
odds_site = "http://espn.go.com/nba/lines" team_data1_labels = ['rank','games','wins','losses','win_loss_per','mp','fg','fga','two_p','two_pa','three_p', 'three_pa','ft','fta','orb','drb','trb','ast','stl','blk','tov','pf','pts'] team_data2_labels = ['rank','games','wins','losses','win_loss_per','mov','sos','srs','pace','ortg','drtg','efg_per', 'tov_per','orb_per','ft_fga','efg_per_opp','tov_per_opp','orb_per_opp','ft_fga_opp'] player_data1_labels = ['rank','age','games','games_started','min_played','fg','fga','two_p','two_pa','three_p', 'three_pa','ft','fta','orb','drb','trb','ast','stl','blk','tov','pf','pts','fg_per', 'two_p_per','three_p_per','ft_per'] player_data2_labels = ['rank','age','games','games_started','min_played','per','ts_per','efg_per','orb_per','drb_per', 'trb_per','ast_per','stl_per','blk_per','tov_per','usg_per','ortg2','drtg2','ows','dws','ws', 'ws_48','fg_per','two_p_per','three_p_per','ft_per'] logging.info('Performing Web-scrapes') team_data1 = Webstats_Funs.get_team_stats(site=team_site1, headers=team_data1_labels) team_data1['update_date'] = today team_data2 = Webstats_Funs.get_team_stats(site=team_site2, headers=team_data2_labels) team_data2['update_date'] = today player_data1 = Webstats_Funs.get_player_stats(site=player_site1, headers=player_data1_labels) player_data1['update_date'] = today player_data2 = Webstats_Funs.get_player_stats(site=player_site2, headers=player_data2_labels) player_data2['update_date'] = today health_data = Webstats_Funs.get_injury_list(site=health_site) health_data['update_date'] = today schedule_data = Webstats_Funs.get_schedule(site=schedule_site) schedule_data['update_date'] = today odds_data = Webstats_Funs.get_lines(odds_site) odds_data['update_date'] = today ######
conn.close() ###### # Set up database connection nba_data_conn = sqlite3.connect(database_file) ###### # Set up today's information today = datetime.today().strftime("%Y-%m-%d") yesterday = datetime.now() - timedelta(days=1) yesterday = yesterday.strftime("%Y-%m-%d") ###### # Get current lines odds_site = 'http://espn.go.com/nba/lines' odds_data = Webstats_Funs.get_lines(odds_site) odds_data['update_date'] = today saveFrameToTable(dataFrame=odds_data, tableName='odds_data', sqldbName='NBA_data', dbFolder=data_folder, e_option='append') ###### # Get today's predictions pred_data_query = 'SELECT * FROM future_schedule WHERE days_ago = 0 AND update_date = \'' + today + '\'' today_pred_data = sql.read_sql(pred_data_query, con=nba_data_conn) odds_data = odds_data.groupby(['home','visitor']).mean() odds_data = odds_data.reset_index() # Do some quick calcs today_pred_data = today_pred_data.merge(odds_data, on=['home', 'visitor'])
player_data1_labels = [ 'rank', 'age', 'games', 'games_started', 'min_played', 'fg', 'fga', 'two_p', 'two_pa', 'three_p', 'three_pa', 'ft', 'fta', 'orb', 'drb', 'trb', 'ast', 'stl', 'blk', 'tov', 'pf', 'pts', 'fg_per', 'two_p_per', 'three_p_per', 'ft_per' ] player_data2_labels = [ 'rank', 'age', 'games', 'games_started', 'min_played', 'per', 'ts_per', 'efg_per', 'orb_per', 'drb_per', 'trb_per', 'ast_per', 'stl_per', 'blk_per', 'tov_per', 'usg_per', 'ortg2', 'drtg2', 'ows', 'dws', 'ws', 'ws_48', 'fg_per', 'two_p_per', 'three_p_per', 'ft_per' ] logging.info('Performing Web-scrapes') team_data1 = Webstats_Funs.get_stats(site=team_site1) team_data1['update_date'] = today team_data2 = Webstats_Funs.get_stats(site=team_site2) team_data2['update_date'] = today player_data1 = Webstats_Funs.get_stats(site=player_site1, paginate=True) player_data1['update_date'] = today player_data2 = Webstats_Funs.get_stats(site=player_site2, paginate=True) player_data2['update_date'] = today health_data = Webstats_Funs.get_injury_list(site=health_site) health_data['update_date'] = today schedule_data = Webstats_Funs.get_schedule(site=schedule_site) schedule_data['update_date'] = today odds_data = Webstats_Funs.get_lines(odds_site) odds_data['update_date'] = today ######