def create_netcdf_target_classes(): execute_create_netcdf_target_classes_start_time = datetime.datetime.now() letter = [] diacritics = [] searchCounter = 0 targetClass = [] beforeWhileLoop = datetime.datetime.now() for eachItem in range(0, len(selected_letters_in_this_loop)): yourLabel = selected_letters_in_this_loop[eachItem][7] OneHotTargetClassNotFound = True decomposed_letter = WordLetterProcessingHelperMethod.decompose_diac_char_into_char_and_diacritics( yourLabel) if len(decomposed_letter) == 2 and decomposed_letter[1] == u'ّ': decomposed_letter[1] = u'َّ' letter.append(decomposed_letter[0]) diacritics.append(decomposed_letter[1]) yourLabel = WordLetterProcessingHelperMethod.attach_diacritics_to_chars( letter, diacritics)[0] while OneHotTargetClassNotFound: try: if listOfDiacritizedCharacter[searchCounter][1] == yourLabel: OneHotTargetClassNotFound = False targetClass.append( listOfDiacritizedCharacter[searchCounter][0]) searchCounter = 0 else: searchCounter += 1 except: x = 1 afterWhileLoop = datetime.datetime.now() print "While Loop takes : ", afterWhileLoop - beforeWhileLoop global purified_target_class purified_target_class = [] purified_target_class = np.array(targetClass) execute_create_netcdf_target_class_end_time = datetime.datetime.now() print "createNetCDFTargetClasses takes : ", \ execute_create_netcdf_target_class_end_time - execute_create_netcdf_target_classes_start_time
for file_name, sentence_number in zip(result, list_of_sentence_numbers): selected_sentence = DBHelperMethod.get_sentence_by(sentence_number) rnn_output = ExcelHelperMethod.read_rnn_op_csv_file(path + file_name) neurons_with_highest_probability = RNNOPProcessingHelperMethod.get_neurons_numbers_with_highest_output_value( rnn_output) list_of_available_diacritics = DBHelperMethod.get_all_diacritics() RNN_Predicted_diacritics = RNNOPProcessingHelperMethod.\ deduce_from_rnn_op_predicted_chars(list_of_available_diacritics, neurons_with_highest_probability) IP_Undiacritized_Chars = DBHelperMethod.get_un_diacritized_chars_by( sentence_number, type) RNN_Predicted_chars = WordLetterProcessingHelperMethod.attach_diacritics_to_chars( IP_Undiacritized_Chars, RNN_Predicted_diacritics) RNN_Predicted_Chars_Count = WordLetterProcessingHelperMethod.get_chars_count_for_each_word_in_this( selected_sentence) RNN_Predicted_Chars_And_Its_Location = WordLetterProcessingHelperMethod.get_location_of_each_char( RNN_Predicted_chars, RNN_Predicted_Chars_Count) # Post Processing RNN_Predicted_Chars_After_Sukun = SukunCorrection.sukun_correction( deepcopy(RNN_Predicted_Chars_And_Its_Location)) RNN_Predicted_Chars_After_Fatha = FathaCorrection.fatha_correction( deepcopy(RNN_Predicted_Chars_After_Sukun)) RNN_Predicted_Chars_After_Dictionary = DictionaryCorrection.get_diac_version_with_smallest_dist( deepcopy(RNN_Predicted_Chars_After_Fatha), sentence_number) # Expected OP