def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, attn_dim, num_layers, dropout, attention, dec_method, emb_freeze, pad_idx, embeddings=None ): super().__init__() self.emb_dim = emb_dim self.enc_hid_dim = enc_hid_dim self.dec_hid_dim = dec_hid_dim dec_input_dim = self.calc_dec_input_dim() self.output_dim = input_dim self.num_layers = num_layers self.dec_method = dec_method self.emb = utils.embedding(input_dim, emb_dim, embeddings, emb_freeze, pad_idx) self.decoder = nn.GRU(dec_input_dim, dec_hid_dim, num_layers=num_layers, bidirectional=False) self.out = nn.Linear(enc_hid_dim + dec_hid_dim + emb_dim, self.output_dim) self.bias_out = nn.Linear(enc_hid_dim + dec_hid_dim + emb_dim, self.output_dim) self.Vo = nn.Parameter(torch.Tensor(dec_hid_dim, 1)) self.attend = attention self.dropout = nn.Dropout(dropout) nn.init.kaiming_uniform_(self.Vo, a=math.sqrt(5))
def __init__( self, input_dim, emb_dim, enc_hid_dim, n_profile, attention, dropout, emb_freeze, pad_idx, embeddings=None ): """use better classify: https://github.com/brightmart/text_classification https://github.com/kk7nc/Text_Classification https://github.com/nadbordrozd/text-top-model https://github.com/prakashpandey9/Text-Classification-Pytorch https://github.com/dennybritz/cnn-text-classification-tf """ super().__init__() self.emb_dim = emb_dim self.emb = utils.embedding(input_dim, emb_dim, embeddings, emb_freeze, pad_idx) self.attention = attention self.dropout = nn.Dropout(dropout)
def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, attn_dim, num_layers, dropout, attention, emb_freeze, pad_idx, embeddings=None ): super().__init__() self.emb_dim = emb_dim self.enc_hid_dim = enc_hid_dim self.dec_hid_dim = dec_hid_dim dec_input_dim = self.calc_dec_input_dim() self.output_dim = input_dim self.num_layers = num_layers self.emb = utils.embedding(input_dim, emb_dim, embeddings, emb_freeze, pad_idx) self.decoder = nn.GRU(dec_input_dim, dec_hid_dim, num_layers=num_layers, bidirectional=False) self.out = nn.Linear(enc_hid_dim + dec_hid_dim + emb_dim, self.output_dim) self.attend = attention self.dropout = nn.Dropout(dropout)
def __init__( self, input_dim, emb_dim, dropout, emb_freeze, pad_idx, embeddings=None ): super().__init__() self.emb = utils.embedding(input_dim, emb_dim, embeddings, emb_freeze, pad_idx) self.dropout = nn.Dropout(dropout)
def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, num_layers, dropout, enc_bidi, emb_freeze, pad_idx, embeddings=None ): super().__init__() self.enc_bidi = enc_bidi self.num_layers = num_layers self.num_directions = _num_dir(enc_bidi) self.enc_hid_dim = enc_hid_dim self.emb = utils.embedding(input_dim, emb_dim, embeddings, emb_freeze, pad_idx) self.encoder = nn.GRU(emb_dim, enc_hid_dim, num_layers=num_layers, bidirectional=enc_bidi) self.out = nn.Linear(enc_hid_dim * self.num_directions, dec_hid_dim) self.dropout = nn.Dropout(dropout)