コード例 #1
0
ファイル: AE_ts_main.py プロジェクト: nhanitvn/AE_ts
"""Hyperparameters"""
LOG_DIR = "/Users/nhanitvn/Personal/Learning/DeepLearning/AE_ts/log_tb"
config = {}  # Put all configuration information into the dict
config['num_layers'] = 2  # number of layers of stacked RNN's
config['hidden_size'] = 90  # memory cells in a layer
config['max_grad_norm'] = 5  # maximum gradient norm during training
config['batch_size'] = batch_size = 64
config['learning_rate'] = .005
config['crd'] = 1  # Hyperparameter for future generalization
config['num_l'] = 20  # number of units in the latent space

plot_every = 10  # after _plot_every_ GD steps, there's console output
max_iterations = 1000  # maximum number of iterations
dropout = 0.8  # Dropout rate
"""Load the data"""
X_train, X_val, y_train, y_val = open_data(direc)

N = X_train.shape[0]
Nval = X_val.shape[0]
D = X_train.shape[1]
config['sl'] = sl = D  # sequence length
print('We have %s observations with %s dimensions' % (N, D))

# Organize the classes
num_classes = len(np.unique(y_train))
base = np.min(y_train)  # Check if data is 0-based
if base != 0:
    y_train -= base
    y_val -= base

# Plot data   # and save high quality plt.savefig('data_examples.eps', format='eps', dpi=1000)
コード例 #2
0
ファイル: AE_ts_main.py プロジェクト: shulinway/AE_ts
config = dict()  # Put all configuration information into the dict
config['num_layers'] = 2  # number of layers of stacked RNN's
config['hidden_size'] = 90  # memory cells in a layer
config['max_grad_norm'] = 5  # maximum gradient norm during training
config['batch_size'] = batch_size = 64
config['learning_rate'] = .005
config['crd'] = 1  # Hyperparameter for future generalization
config['num_l'] = 20  # number of units in the latent space

plot_every = 100  # after _plot_every_ GD steps, there's console output
max_iterations = 1000  # maximum number of iterations
dropout = 0.8  # Dropout rate

# Load the data
X_train, X_val, y_train, y_val = open_data(
    '/home/rob/Dropbox/ml_projects/LSTM/UCR_TS_Archive_2015')

N = X_train.shape[0]
Nval = X_val.shape[0]
D = X_train.shape[1]
config['sl'] = sl = D  # sequence length
print('We have %s observations with %s dimensions' % (N, D))

# Organize the classes
num_classes = len(np.unique(y_train))
base = np.min(y_train)  # Check if data is 0-based
if base != 0:
    y_train -= base
    y_val -= base

# Plot data   # and save high quality plt.savefig('data_examples.eps', format='eps', dpi=1000)
コード例 #3
0
ファイル: AE_ts_main.py プロジェクト: YiheWang1234/test
direc = './'
LOG_DIR = './'
config = {}  # Put all configuration information into the dict
config['num_layers'] = 2  # number of layers of stacked RNN's
config['hidden_size'] = 90  # memory cells in a layer
config['max_grad_norm'] = 5  # maximum gradient norm during training
config['batch_size'] = batch_size = 64
config['learning_rate'] = .005
config['crd'] = 1  # Hyperparameter for future generalization
config['num_l'] = 1  # number of units in the latent space

plot_every = 100  # after _plot_every_ GD steps, there's console output
max_iterations = 10000  # maximum number of iterations
dropout = 0.8  # Dropout rate
"""Load the data"""
X_train, X_val, y_train, y_val = open_data('./UCR_TS_Archive_2015')
X_train, X_train_out = X_train[:, :-1], X_train[:, -1]
X_val, X_val_out = X_val[:, :-1], X_val[:, -1]

N = X_train.shape[0]
Nval = X_val.shape[0]
D = X_train.shape[1]
config['sl'] = sl = D  # sequence length
print('We have %s observations with %s dimensions' % (N, D))

# Organize the classes
num_classes = len(np.unique(y_train))
base = np.min(y_train)  # Check if data is 0-based
if base != 0:
    y_train -= base
    y_val -= base
コード例 #4
0
LOG_DIR = "./Saved_Model"  # Directory for the logging

config = dict()  # Put all configuration information into the dict
config['num_layers'] = 2  # number of layers of stacked RNN's
config['hidden_size'] = 90  # memory cells in a layer
config['max_grad_norm'] = 0.5  # maximum gradient norm during training
config['batch_size'] = batch_size = 64
config['learning_rate'] = .005
config['num_l'] = 20  # number of units in the latent space

plot_every = 100  # after _plot_every_ GD steps, there's console output
max_iterations = 100  # maximum number of iterations
dropout = 0.8  # Dropout rate

# Load the data
X_train, X_val = open_data('./Data/')

N = X_train.shape[0]  # nbr of element in train db
Nval = X_val.shape[0]  # nbr of element in val db
D = X_train.shape[1]  # nbr of columns in train db
config['sl'] = sl = D  # sequence length
print('We have %s observations with %s dimensions' % (N, D))

# Organize the classes
num_classes = 15
"""Training time!"""
model = Model(config)
sess = tf.Session()
perf_collect = np.zeros(
    (2, int(np.floor(max_iterations / plot_every)))
)  # np.floor -> a = np.array([-1.7,2.0]) np.floor(a) array([-2.,  2.]) *** np.zeros Return a new array of given shape filled with zeros.