コード例 #1
0
def test_parfor():
    my_array = np.arange(100).reshape(10, 10)
    i, j = np.random.randint(0, 9, 2)
    my_list = list(my_array.ravel())
    for engine in ["joblib", "dask", "serial"]:
        for backend in ["threading", "multiprocessing"]:
            npt.assert_equal(
                para.parfor(power_it,
                            my_list,
                            engine=engine,
                            backend=backend,
                            out_shape=my_array.shape)[i, j],
                power_it(my_array[i, j]))

            # If it's not reshaped, the first item should be the item 0, 0:
            npt.assert_equal(
                para.parfor(power_it, my_list, engine=engine,
                            backend=backend)[0], power_it(my_array[0, 0]))
コード例 #2
0
ファイル: test_parallel.py プロジェクト: jyeatman/pyAFQ
def test_parfor():
    my_array = np.arange(100).reshape(10, 10)
    i, j = np.random.randint(0, 9, 2)
    my_list = list(my_array.ravel())
    for engine in ["joblib", "dask", "serial"]:
        for backend in ["threading", "multiprocessing"]:
            npt.assert_equal(para.parfor(power_it,
                                         my_list,
                                         engine=engine,
                                         backend=backend,
                                         out_shape=my_array.shape)[i, j],
                             power_it(my_array[i, j]))

            # If it's not reshaped, the first item should be the item 0, 0:
            npt.assert_equal(para.parfor(power_it,
                                         my_list,
                                         engine=engine,
                                         backend=backend)[0],
                             power_it(my_array[0, 0]))
コード例 #3
0
ファイル: tractography.py プロジェクト: rfdougherty/pyAFQ
def track(params_file,
          directions="det",
          max_angle=30.,
          sphere=None,
          seed_mask=None,
          seeds=2,
          stop_mask=None,
          stop_threshold=0.2,
          step_size=0.5,
          n_jobs=-1,
          n_chunks=100,
          backend="threading",
          engine="dask"):
    """
    Tractography

    Parameters
    ----------
    params_file : str, nibabel img.
        Full path to a nifti file containing CSD spherical harmonic
        coefficients, or nibabel img with model params.
    directions : str
        How tracking directions are determined.
        One of: {"deterministic" | "probablistic"}
    max_angle : float, optional.
        The maximum turning angle in each step. Default: 30
    sphere : Sphere object, optional.
        The discretization of direction getting. default:
        dipy.data.default_sphere.
    seed_mask : array, optional.
        Binary mask describing the ROI within which we seed for tracking.
        Default to the entire volume.
    seed : int or 2D array, optional.
        The seeding density: if this is an int, it is is how many seeds in each
        voxel on each dimension (for example, 2 => [2, 2, 2]). If this is a 2D
        array, these are the coordinates of the seeds.
    stop_mask : array, optional.
        A floating point value that determines a stopping criterion (e.g. FA).
        Default to no stopping (all ones).
    stop_threshold : float, optional.
        A value of the stop_mask below which tracking is terminated. Default to
        0.2.
    step_size : float, optional.

    Returns
    -------
    LocalTracking object.
    """
    if isinstance(params_file, str):
        params_img = nib.load(params_file)
    else:
        params_img = params_file

    model_params = params_img.get_data()
    affine = params_img.get_affine()

    if isinstance(seeds, int):
        if seed_mask is None:
            seed_mask = np.ones(params_img.shape[:3])
        seeds = dtu.seeds_from_mask(seed_mask, density=seeds, affine=affine)
    if sphere is None:
        sphere = dpd.default_sphere

    if directions == "det":
        dg = DeterministicMaximumDirectionGetter
    elif directions == "prob":
        dg = ProbabilisticDirectionGetter

    # These are models that have ODFs (there might be others in the future...)
    if model_params.shape[-1] == 12 or model_params.shape[-1] == 27:
        model = "ODF"
    # Could this be an SHM model? If the max order is a whole even number, it
    # might be:
    elif shm.calculate_max_order(model_params.shape[-1]) % 2 == 0:
        model = "SHM"

    if model == "SHM":
        dg = dg.from_shcoeff(model_params, max_angle=max_angle, sphere=sphere)

    elif model == "ODF":
        evals = model_params[..., :3]
        evecs = model_params[..., 3:12].reshape(params_img.shape[:3] + (3, 3))
        odf = tensor_odf(evals, evecs, sphere)
        dg = dg.from_pmf(odf, max_angle=max_angle, sphere=sphere)

    if stop_mask is None:
        stop_mask = np.ones(params_img.shape[:3])

    threshold_classifier = ThresholdTissueClassifier(stop_mask, stop_threshold)

    if engine == "serial":
        return _local_tracking(seeds,
                               dg,
                               threshold_classifier,
                               affine,
                               step_size=step_size)
    else:
        if n_chunks < seeds.shape[0]:
            seeds_list = []
            i2 = 0
            seeds_per_chunk = seeds.shape[0] // n_chunks
            for chunk in range(n_chunks - 1):
                i1 = i2
                i2 = seeds_per_chunk * (chunk + 1)
                seeds_list.append(seeds[i1:i2])
        else:
            seeds_list = seeds
        ll = parfor(_local_tracking,
                    seeds_list,
                    n_jobs=n_jobs,
                    engine=engine,
                    backend=backend,
                    func_args=[dg, threshold_classifier, affine],
                    func_kwargs=dict(step_size=step_size))

        return (list(chain(*ll)))
コード例 #4
0
ファイル: tractography.py プロジェクト: yeatmanlab/pyAFQ
 def generate_streamlines(self):
     streamlines = parfor(self._track, self.seeds, n_jobs=self.n_jobs,
                          backend=self.backend, engine=self.engine)
     streamlines = list(chain(*streamlines))
     return dtu.move_streamlines(streamlines,
                                 self.affine)