コード例 #1
0
ファイル: MarkdownReport.py プロジェクト: vitay/ANNarchy
def _process_variables(variables, neuron=True):
    eqs = ""
    for var in variables:
        # Min value
        if 'min' in var['bounds'].keys():
            min_val = ", minimum: " + str(var['bounds']['min'])
        else:
            min_val =""
        # Max value
        if 'max' in var['bounds'].keys():
            max_val = ", maximum: " + str(var['bounds']['max'])
        else:
            max_val =""
        # Method
        if var['ode']:
            method = ", " + find_method(var) + " numerical method"
        else:
            method = ""

        eqs += """
* Variable %(name)s : %(locality)s, initial value: %(init)s%(min)s%(max)s%(method)s

$$
%(code)s
$$
""" % { 'name': "$" + LatexParser._latexify_name(var['name'], []) + "$", 
        'code': var['latex'],
        'locality': _adapt_locality_neuron(var['locality']) if neuron else _adapt_locality_synapse(var['locality']),
        'init': var['init'],
        'min': min_val,
        'max': max_val,
        'method': method}

    return eqs
コード例 #2
0
ファイル: MarkdownReport.py プロジェクト: ANNarchy/ANNarchy
def _process_variables(variables, neuron=True):
    eqs = ""
    for var in variables:
        # Min value
        if 'min' in var['bounds'].keys():
            min_val = ", minimum: " + str(var['bounds']['min'])
        else:
            min_val =""
        # Max value
        if 'max' in var['bounds'].keys():
            max_val = ", maximum: " + str(var['bounds']['max'])
        else:
            max_val =""
        # Method
        if var['ode']:
            method = ", " + find_method(var) + " numerical method"
        else:
            method = ""

        eqs += """
* Variable %(name)s : %(locality)s, initial value: %(init)s%(min)s%(max)s%(method)s

$$
%(code)s
$$
""" % { 'name': "$" + LatexParser._latexify_name(var['name'], []) + "$", 
        'code': var['latex'],
        'locality': _adapt_locality_neuron(var['locality']) if neuron else _adapt_locality_synapse(var['locality']),
        'init': var['init'],
        'min': min_val,
        'max': max_val,
        'method': method}

    return eqs
コード例 #3
0
def _generate_population_parameters(net_id):
    txt = ""
    pop_tpl = """
    %(name)s             & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    for rk, pop in enumerate(Global._network[net_id]['populations']):
        parameters = ""
        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(
                    np.array(val).max()) + "]$"
            parameters += pop_tpl % {
                'name': LatexParser.pop_name(pop.name) if idx == 0 else "",
                'param': LatexParser._latexify_name(param, []),
                'value': val
            }

        txt += popparameters_template % {
            'parameters':
            parameters,
            'firstpopulation':
            "\hdr{3}{H}{Population parameters}\\\\ \\hline" if rk == 0 else ""
        }

    return txt
コード例 #4
0
def _generate_projection_parameters(net_id, gather_subprojections):
    txt = ""
    proj_tpl = """
    %(name)s & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name and proj.target == existing_proj.target:  # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    first = True
    for rk, proj in enumerate(projections):
        parameters = ""
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name),
                    'post': LatexParser.pop_name(proj.post.name),
                    'target': LatexParser._format_list(proj.target, ' / ')
                }
            else:
                proj_name = ""
            val = proj.init[param]

            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.min(val)) + ", " + str(np.max(val)) + "]$"
            parameters += proj_tpl % {
                'name': proj_name,
                'param': LatexParser._latexify_name(param, []),
                'value': val
            }

        if parameters != "":
            txt += projparameters_template % {
                'parameters':
                parameters,
                'firstprojection':
                "\hdr{3}{H}{Projection parameters}\\\\ \\hline"
                if first else ""
            }
            first = False

    return txt
コード例 #5
0
ファイル: LatexReport.py プロジェクト: ANNarchy/ANNarchy
def _generate_constants(net_id):
    cst_tpl = """
    & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    parameters = ""
    if len(Global._objects['constants']) == 0:
        return ""

    for constant in Global._objects['constants']:
        parameters += cst_tpl % {'param': LatexParser._latexify_name(constant.name, []), 'value': constant.value}

    txt = constants_template % {'parameters': parameters}

    return txt
コード例 #6
0
def _generate_constants(net_id):
    cst_tpl = """
    & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    parameters = ""
    if len(Global._objects['constants']) == 0:
        return ""

    for constant in Global._objects['constants']:
        parameters += cst_tpl % {'param': LatexParser._latexify_name(constant.name, []), 'value': constant.value}

    txt = constants_template % {'parameters': parameters}

    return txt
コード例 #7
0
ファイル: LatexReport.py プロジェクト: ANNarchy/ANNarchy
def _generate_projection_parameters(net_id, gather_subprojections):
    txt = ""
    proj_tpl = """
    %(name)s & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    first = True
    for rk, proj in enumerate(projections):
        parameters = ""
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name), 
                    'post': LatexParser.pop_name(proj.post.name), 
                    'target': LatexParser._format_list(proj.target, ' / ')}
            else:
                proj_name = ""
            val = proj.init[param]
            
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.min(val)) + ", " + str(np.max(val)) + "]$"
            parameters += proj_tpl % {'name': proj_name, 'param': LatexParser._latexify_name(param, []), 'value': val}

        if parameters != "":
            txt += projparameters_template % {'parameters': parameters, 'firstprojection': "\hdr{3}{H}{Projection parameters}\\\\ \\hline" if first else ""}
            first = False

    return txt
コード例 #8
0
ファイル: MarkdownReport.py プロジェクト: vitay/ANNarchy
def _generate_parameters(net_id, gather_subprojections):
    txt = """
# Parameters
"""

    # Constants
    if len(Global._objects['constants']) > 0:
        txt += """
## Constants

"""
        constants_list = [
            ["$" + LatexParser._latexify_name(constant.name, []) + "$",  constant.value]
                for constant in Global._objects['constants']]

        constants_headers = ["Name", "Value"]
        txt += _make_table(constants_headers, constants_list)

    # Population parameters
    txt += """
## Population parameters

"""
    parameters_list = []
    for rk, pop in enumerate(Global._network[net_id]['populations']):    
        neuron_name = "Neuron " + str(pop.neuron_type._rk_neurons_type) if pop.neuron_type.name in Neuron._default_names.values() \
            else pop.neuron_type.name

        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   LatexParser.pop_name(pop.name) if idx==0 else "", 
                    neuron_name if idx==0 else "", 
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    population_headers = ["Population", "Neuron type", "Name", "Value"]
    txt += _make_table(population_headers, parameters_list)

    # Projection parameters
    txt += """
## Projection parameters

"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name \
                    and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    parameters_list = []
    for rk, proj in enumerate(projections):
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name), 
                    'post': LatexParser.pop_name(proj.post.name), 
                    'target': LatexParser._format_list(proj.target, ' / ')}
            else:
                proj_name = ""
            
            synapse_name = "Synapse " + str(proj.synapse_type._rk_synapses_type) if proj.synapse_type.name in Synapse._default_names.values() \
                else proj.synapse_type.name
            
            val = proj.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   proj_name, 
                    synapse_name if idx == 0 else "",
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    projection_headers = ["Projection", "Synapse type", "Name", "Value"]
    txt += _make_table(projection_headers, parameters_list)

    return txt
コード例 #9
0
ファイル: MarkdownReport.py プロジェクト: vitay/ANNarchy
def _generate_synapse_models(net_id):
    txt = """
# Synapse models
"""

    for idx, synapse in enumerate(Global._objects['synapses']):

        # Do not document default synapses
        if synapse.name == "-":
            continue

        # Find a name for the synapse
        synapse_name = "Synapse " + str(synapse._rk_synapses_type) if synapse.name in Synapse._default_names.values() else synapse.name

        # Description
        description = synapse.short_description
        if description == None:
            description = "Spiking synapse." if synapse.type == 'spike' else 'Rate-coded synapse'

        # Parameters
        parameters = extract_parameters(synapse.parameters, synapse.extra_values)
        parameters_list = [
            ["$" + LatexParser._latexify_name(param['name'], []) + "$", param['init'], _adapt_locality_synapse(param['locality']), param['ctype']] 
                for param in parameters]

        parameters_headers = ["Name", "Default value", "Locality", "Type"]
        parameters_table = _make_table(parameters_headers, parameters_list)

        if len(parameters) == 0:
            parameters_table = "$$\\varnothing$$"

        # Generate the code for the equations
        psp, variables, pre_desc, post_desc = LatexParser._process_synapse_equations(synapse)

        eqs = _process_variables(variables, neuron = False)

        # PSP
        if synapse.type == "rate":
            psp = """
**Weighted sum:**

$$%(transmission)s$$
"""  % {'transmission': psp}
        elif synapse.type == "spike" and psp != "":
            psp = """
**Continuous transmission:**

$$%(transmission)s$$
"""  % {'transmission': psp}
        else:
            psp = ""

        # Pre- and post-events
        if synapse.type == "spike":
            if len(pre_desc) > 0:
                eqs += """
**Pre-synaptic event at $t_\\text{pre} + d$:**
"""
                for pre in pre_desc:
                    eqs += "$$"+pre+"$$\n"
            if len(post_desc) > 0:
                eqs += """
**Post-synaptic event at $t_\\text{post}$:**
"""
                for post in post_desc:
                    eqs += "$$"+post+"$$\n"

        # Finalize the template
        txt += synapse_tpl % {  'name': synapse_name, 
                                'description': description, 
                                'psp': psp,
                                'parameters': parameters_table,
                                'eqs': eqs}

    return txt
コード例 #10
0
ファイル: MarkdownReport.py プロジェクト: vitay/ANNarchy
def _generate_neuron_models(net_id):
    txt = """
# Neuron models
"""
    for idx, neuron in enumerate(Global._objects['neurons']):

        # Name
        if neuron.name in Neuron._default_names.values(): # name not set
            neuron_name = "Neuron " + str(neuron._rk_neurons_type)
        else:
            neuron_name = neuron.name

        # Description
        description = neuron.short_description
        if description == None:
            description = "Spiking neuron." if neuron.type == 'spike' else 'Rate-coded neuron'

        # Parameters
        parameters = extract_parameters(neuron.parameters, neuron.extra_values)
        parameters_list = [
            ["$" + LatexParser._latexify_name(param['name'], []) + "$", param['init'], 
                _adapt_locality_neuron(param['locality']), param['ctype']] 
                    for param in parameters]

        parameters_headers = ["Name", "Default value", "Locality", "Type"]
        parameters_table = _make_table(parameters_headers, parameters_list)

        if len(parameters) == 0:
            parameters_table = "$$\\varnothing$$"

        # Generate the code for the equations
        variables, spike_condition, spike_reset = LatexParser._process_neuron_equations(neuron)
        
        eqs = _process_variables(variables, neuron=True)

        # Spiking neurons
        if neuron.type == 'spike':

            reset_txt = "* Emit a spike a time $t$.\n"
            for r in spike_reset:
                reset_txt += "* $" + r + "$\n"

            eqs += """
**Spike emission:**

if $%(condition)s$ :

%(reset)s
""" % {'condition': spike_condition, 'reset': reset_txt}


        # Possible function
        if not neuron.functions == None:
            eqs += """
**Functions**

%(functions)s
""" % {'functions': LatexParser._process_functions(neuron.functions, begin="$$", end="$$\n\n")}

        # Finalize the template
        txt += neuron_tpl % {   'name': neuron_name, 
                                'description': description, 
                                'parameters': parameters_table,
                                'eqs': eqs}

    return txt
コード例 #11
0
ファイル: LatexReport.py プロジェクト: ANNarchy/ANNarchy
def _generate_population_parameters(net_id):
    txt = ""
    pop_tpl = """
    %(name)s             & $%(param)s$        & %(value)s  \\\\ \\hline
"""
    for rk, pop in enumerate(Global._network[net_id]['populations']):
        parameters = ""
        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters += pop_tpl % {'name': LatexParser.pop_name(pop.name) if idx==0 else "", 'param': LatexParser._latexify_name(param, []), 'value': val}

        txt += popparameters_template % {'parameters': parameters, 'firstpopulation': "\hdr{3}{H}{Population parameters}\\\\ \\hline" if rk==0 else ""}

    return txt
コード例 #12
0
ファイル: MarkdownReport.py プロジェクト: ANNarchy/ANNarchy
def _generate_parameters(net_id, gather_subprojections):
    txt = """
# Parameters
"""

    # Constants
    if len(Global._objects['constants']) > 0:
        txt += """
## Constants

"""
        constants_list = [
            ["$" + LatexParser._latexify_name(constant.name, []) + "$",  constant.value]
                for constant in Global._objects['constants']]

        constants_headers = ["Name", "Value"]
        txt += _make_table(constants_headers, constants_list)

    # Population parameters
    txt += """
## Population parameters

"""
    parameters_list = []
    for rk, pop in enumerate(Global._network[net_id]['populations']):    
        neuron_name = "Neuron " + str(pop.neuron_type._rk_neurons_type) if pop.neuron_type.name in Neuron._default_names.values() \
            else pop.neuron_type.name

        for idx, param in enumerate(pop.parameters):
            val = pop.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   LatexParser.pop_name(pop.name) if idx==0 else "", 
                    neuron_name if idx==0 else "", 
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    population_headers = ["Population", "Neuron type", "Name", "Value"]
    txt += _make_table(population_headers, parameters_list)

    # Projection parameters
    txt += """
## Projection parameters

"""
    if gather_subprojections:
        projections = []
        for proj in Global._network[net_id]['projections']:
            for existing_proj in projections:
                if proj.pre.name == existing_proj.pre.name and proj.post.name == existing_proj.post.name \
                    and proj.target == existing_proj.target : # TODO
                    break
            else:
                projections.append(proj)
    else:
        projections = Global._network[net_id]['projections']

    parameters_list = []
    for rk, proj in enumerate(projections):
        for idx, param in enumerate(proj.parameters):
            if param == 'w':
                continue
            if idx == 0:
                proj_name = "%(pre)s  $\\rightarrow$ %(post)s with target %(target)s" % {
                    'pre': LatexParser.pop_name(proj.pre.name), 
                    'post': LatexParser.pop_name(proj.post.name), 
                    'target': LatexParser._format_list(proj.target, ' / ')}
            else:
                proj_name = ""
            
            synapse_name = "Synapse " + str(proj.synapse_type._rk_synapses_type) if proj.synapse_type.name in Synapse._default_names.values() \
                else proj.synapse_type.name
            
            val = proj.init[param]
            if isinstance(val, (list, np.ndarray)):
                val = "$[" + str(np.array(val).min()) + ", " + str(np.array(val).max()) + "]$"
            parameters_list.append(
                [   proj_name, 
                    synapse_name if idx == 0 else "",
                    "$" + LatexParser._latexify_name(param, []) + "$", 
                    val ] )

    projection_headers = ["Projection", "Synapse type", "Name", "Value"]
    txt += _make_table(projection_headers, parameters_list)

    return txt
コード例 #13
0
ファイル: MarkdownReport.py プロジェクト: ANNarchy/ANNarchy
def _generate_synapse_models(net_id):
    txt = """
# Synapse models
"""

    for idx, synapse in enumerate(Global._objects['synapses']):

        # Do not document default synapses
        if synapse.name == "-":
            continue

        # Find a name for the synapse
        synapse_name = "Synapse " + str(synapse._rk_synapses_type) if synapse.name in Synapse._default_names.values() else synapse.name

        # Description
        description = synapse.short_description
        if description == None:
            description = "Spiking synapse." if synapse.type == 'spike' else 'Rate-coded synapse'

        # Parameters
        parameters = extract_parameters(synapse.parameters, synapse.extra_values)
        parameters_list = [
            ["$" + LatexParser._latexify_name(param['name'], []) + "$", param['init'], _adapt_locality_synapse(param['locality']), param['ctype']] 
                for param in parameters]

        parameters_headers = ["Name", "Default value", "Locality", "Type"]
        parameters_table = _make_table(parameters_headers, parameters_list)

        if len(parameters) == 0:
            parameters_table = "$$\\varnothing$$"

        # Generate the code for the equations
        psp, variables, pre_desc, post_desc = LatexParser._process_synapse_equations(synapse)

        eqs = _process_variables(variables, neuron = False)

        # PSP
        if synapse.type == "rate":
            psp = """
**Weighted sum:**

$$%(transmission)s$$
"""  % {'transmission': psp}
        elif synapse.type == "spike" and psp != "":
            psp = """
**Continuous transmission:**

$$%(transmission)s$$
"""  % {'transmission': psp}
        else:
            psp = ""

        # Pre- and post-events
        if synapse.type == "spike":
            if len(pre_desc) > 0:
                eqs += """
**Pre-synaptic event at $t_\\text{pre} + d$:**
"""
                for pre in pre_desc:
                    eqs += "$$"+pre+"$$\n"
            if len(post_desc) > 0:
                eqs += """
**Post-synaptic event at $t_\\text{post}$:**
"""
                for post in post_desc:
                    eqs += "$$"+post+"$$\n"

        # Finalize the template
        txt += synapse_tpl % {  'name': synapse_name, 
                                'description': description, 
                                'psp': psp,
                                'parameters': parameters_table,
                                'eqs': eqs}

    return txt
コード例 #14
0
ファイル: MarkdownReport.py プロジェクト: ANNarchy/ANNarchy
def _generate_neuron_models(net_id):
    txt = """
# Neuron models
"""
    for idx, neuron in enumerate(Global._objects['neurons']):

        # Name
        if neuron.name in Neuron._default_names.values(): # name not set
            neuron_name = "Neuron " + str(neuron._rk_neurons_type)
        else:
            neuron_name = neuron.name

        # Description
        description = neuron.short_description
        if description == None:
            description = "Spiking neuron." if neuron.type == 'spike' else 'Rate-coded neuron'

        # Parameters
        parameters = extract_parameters(neuron.parameters, neuron.extra_values)
        parameters_list = [
            ["$" + LatexParser._latexify_name(param['name'], []) + "$", param['init'], 
                _adapt_locality_neuron(param['locality']), param['ctype']] 
                    for param in parameters]

        parameters_headers = ["Name", "Default value", "Locality", "Type"]
        parameters_table = _make_table(parameters_headers, parameters_list)

        if len(parameters) == 0:
            parameters_table = "$$\\varnothing$$"

        # Generate the code for the equations
        variables, spike_condition, spike_reset = LatexParser._process_neuron_equations(neuron)
        
        eqs = _process_variables(variables, neuron=True)

        # Spiking neurons
        if neuron.type == 'spike':

            reset_txt = "* Emit a spike a time $t$.\n"
            for r in spike_reset:
                reset_txt += "* $" + r + "$\n"

            eqs += """
**Spike emission:**

if $%(condition)s$ :

%(reset)s
""" % {'condition': spike_condition, 'reset': reset_txt}


        # Possible function
        if not neuron.functions == None:
            eqs += """
**Functions**

%(functions)s
""" % {'functions': LatexParser._process_functions(neuron.functions, begin="$$", end="$$\n\n")}

        # Finalize the template
        txt += neuron_tpl % {   'name': neuron_name, 
                                'description': description, 
                                'parameters': parameters_table,
                                'eqs': eqs}

    return txt