コード例 #1
0
def comb_algorithm(l, m, n, dataset_original1, privileged_groups1,
                   unprivileged_groups1, optim_options1):

    dataset_original2 = copy.deepcopy(dataset_original1)
    privileged_groups2 = copy.deepcopy(privileged_groups1)
    unprivileged_groups2 = copy.deepcopy(unprivileged_groups1)
    optim_options2 = copy.deepcopy(optim_options1)

    print(l, m, n)
    dataset_orig_train, dataset_orig_vt = dataset_original2.split([0.7],
                                                                  shuffle=True)
    dataset_orig_valid, dataset_orig_test = dataset_orig_vt.split([0.5],
                                                                  shuffle=True)

    if l == 0:
        dataset_transf_train, dataset_transf_valid, dataset_transf_test = dataset_orig_train, dataset_orig_valid, dataset_orig_test
    else:
        pre_used = preAlgorithm[l - 1]
        dataset_transf_train, dataset_transf_valid, dataset_transf_test = Pre(
            pre_used, dataset_orig_train, dataset_orig_valid,
            dataset_orig_test, privileged_groups2, unprivileged_groups2,
            optim_options2)

    #assert (l,m,n)!=(2,0,0)
    #assert not np.all(dataset_transf_train.labels.flatten()==1.0)

    if m == 0:
        dataset_transf_valid_pred, dataset_transf_test_pred = train(
            dataset_transf_train, dataset_transf_valid, dataset_transf_test,
            privileged_groups2, unprivileged_groups2)
    else:
        in_used = inAlgorithm[m - 1]
        if in_used == "adversarial_debiasing":
            dataset_transf_valid_pred, dataset_transf_test_pred = adversarial_debiasing(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "art_classifier":
            dataset_transf_valid_pred, dataset_transf_test_pred = art_classifier(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "prejudice_remover":
            for key, value in privileged_groups2[0].items():
                sens_attr = key
            dataset_transf_valid_pred, dataset_transf_test_pred = prejudice_remover(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2,
                sens_attr)

    if n == 0:
        dataset_transf_test_pred_transf = dataset_transf_test_pred

    else:
        post_used = postAlgorithm[n - 1]
        if post_used == "calibrated_eqodds":
            cpp = CalibratedEqOddsPostprocessing(
                privileged_groups=privileged_groups2,
                unprivileged_groups=unprivileged_groups2,
                cost_constraint=cost_constraint,
                seed=1)
            cpp = cpp.fit(dataset_transf_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = cpp.predict(
                dataset_transf_test_pred)

        elif post_used == "eqodds":
            EO = EqOddsPostprocessing(unprivileged_groups=unprivileged_groups2,
                                      privileged_groups=privileged_groups2,
                                      seed=1)
            EO = EO.fit(dataset_transf_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = EO.predict(
                dataset_transf_test_pred)

        elif post_used == "reject_option":
            ROC = RejectOptionClassification(
                unprivileged_groups=unprivileged_groups2,
                privileged_groups=privileged_groups2,
                low_class_thresh=0.01,
                high_class_thresh=0.99,
                num_class_thresh=100,
                num_ROC_margin=50,
                metric_name=allowed_metrics[0],
                metric_ub=metric_ub,
                metric_lb=metric_lb)
            ROC = ROC.fit(dataset_transf_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = ROC.predict(
                dataset_transf_test_pred)

    metric = ClassificationMetric(dataset_transf_test,
                                  dataset_transf_test_pred_transf,
                                  unprivileged_groups=unprivileged_groups2,
                                  privileged_groups=privileged_groups2)

    metrics = OrderedDict()
    metrics["Classification accuracy"] = metric.accuracy()
    TPR = metric.true_positive_rate()
    TNR = metric.true_negative_rate()
    bal_acc_nodebiasing_test = 0.5 * (TPR + TNR)
    metrics["Balanced classification accuracy"] = bal_acc_nodebiasing_test
    metrics[
        "Statistical parity difference"] = metric.statistical_parity_difference(
        )
    metrics["Disparate impact"] = metric.disparate_impact()
    metrics[
        "Equal opportunity difference"] = metric.equal_opportunity_difference(
        )
    metrics["Average odds difference"] = metric.average_odds_difference()
    metrics["Theil index"] = metric.theil_index()
    metrics["United Fairness"] = metric.generalized_entropy_index()
    # print(metrics)

    feature = "["
    for m in metrics:
        feature = feature + " " + str(round(metrics[m], 4))
    feature = feature + "]"

    return feature
コード例 #2
0
def comb_algorithm(l, m, n, dataset_original1, privileged_groups1,
                   unprivileged_groups1, optim_options1):

    dataset_original2 = copy.deepcopy(dataset_original1)
    privileged_groups2 = copy.deepcopy(privileged_groups1)
    unprivileged_groups2 = copy.deepcopy(unprivileged_groups1)
    optim_options2 = copy.deepcopy(optim_options1)

    print(l, m, n)
    dataset_original_train, dataset_original_vt = dataset_original2.split(
        [0.7], shuffle=True)
    dataset_original_valid, dataset_original_test = dataset_original_vt.split(
        [0.5], shuffle=True)
    dataset_original_test.labels = dataset_original_test.labels
    print('=======================')
    #print(dataset_original_test.labels)
    dataset_orig_train = copy.deepcopy(dataset_original_train)
    dataset_orig_valid = copy.deepcopy(dataset_original_valid)
    dataset_orig_test = copy.deepcopy(dataset_original_test)

    if l == 0:
        dataset_transfer_train = copy.deepcopy(dataset_original_train)
        dataset_transfer_valid = copy.deepcopy(dataset_original_valid)
        dataset_transfer_test = copy.deepcopy(dataset_original_test)
        #dataset_transf_train, dataset_transf_valid, dataset_transf_test = dataset_orig_train, dataset_orig_valid, dataset_orig_test
    else:
        pre_used = preAlgorithm[l - 1]
        dataset_transfer_train, dataset_transfer_valid, dataset_transfer_test = Pre(
            pre_used, dataset_orig_train, dataset_orig_valid,
            dataset_orig_test, privileged_groups2, unprivileged_groups2,
            optim_options2)

    dataset_transf_train = copy.deepcopy(dataset_transfer_train)
    dataset_transf_valid = copy.deepcopy(dataset_transfer_valid)
    dataset_transf_test = copy.deepcopy(dataset_transfer_test)
    if m == 0:
        dataset_transfer_valid_pred, dataset_transfer_test_pred = plain_model(
            dataset_transf_train, dataset_transf_valid, dataset_transf_test,
            privileged_groups2, unprivileged_groups2)
    else:
        in_used = inAlgorithm[m - 1]
        if in_used == "adversarial_debiasing":
            dataset_transfer_valid_pred, dataset_transfer_test_pred = adversarial_debiasing(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "art_classifier":
            dataset_transfer_valid_pred, dataset_transfer_test_pred = art_classifier(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2)
        elif in_used == "prejudice_remover":
            for key, value in privileged_groups2[0].items():
                sens_attr = key
            dataset_transfer_valid_pred, dataset_transfer_test_pred = prejudice_remover(
                dataset_transf_train, dataset_transf_valid,
                dataset_transf_test, privileged_groups2, unprivileged_groups2,
                sens_attr)

    dataset_transf_valid_pred = copy.deepcopy(dataset_transfer_valid_pred)
    dataset_transf_test_pred = copy.deepcopy(dataset_transfer_test_pred)
    if n == 0:
        dataset_transf_test_pred_transf = copy.deepcopy(
            dataset_transfer_test_pred)

    else:
        post_used = postAlgorithm[n - 1]
        if post_used == "calibrated_eqodds":
            cpp = CalibratedEqOddsPostprocessing(
                privileged_groups=privileged_groups2,
                unprivileged_groups=unprivileged_groups2,
                cost_constraint=cost_constraint)
            cpp = cpp.fit(dataset_transfer_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = cpp.predict(
                dataset_transf_test_pred)

        elif post_used == "eqodds":
            EO = EqOddsPostprocessing(unprivileged_groups=unprivileged_groups2,
                                      privileged_groups=privileged_groups2)
            EO = EO.fit(dataset_transfer_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = EO.predict(
                dataset_transf_test_pred)

        elif post_used == "reject_option":
            #dataset_transf_test_pred_transf = reject_option(dataset_transf_valid, dataset_transf_valid_pred, dataset_transf_test, dataset_transf_test_pred, privileged_groups2, unprivileged_groups2)

            ROC = RejectOptionClassification(
                unprivileged_groups=unprivileged_groups2,
                privileged_groups=privileged_groups2)
            ROC = ROC.fit(dataset_transfer_valid, dataset_transf_valid_pred)
            dataset_transf_test_pred_transf = ROC.predict(
                dataset_transf_test_pred)

    #print('=======================')
    org_labels = dataset_orig_test.labels
    print(dataset_orig_test.labels)
    #print(dataset_transf_test.labels)
    #print('=======================')
    pred_labels = dataset_transf_test_pred.labels
    print(dataset_transf_test_pred.labels)

    true_pred = org_labels == pred_labels
    print("acc after in: ", float(np.sum(true_pred)) / pred_labels.shape[1])
    #print('=======================')
    #print(dataset_transf_test_pred_transf.labels)
    #print(dataset_transf_test_pred_transf.labels.shape)

    metric = ClassificationMetric(dataset_transfer_test,
                                  dataset_transf_test_pred_transf,
                                  unprivileged_groups=unprivileged_groups2,
                                  privileged_groups=privileged_groups2)

    metrics = OrderedDict()
    metrics["Classification accuracy"] = metric.accuracy()
    TPR = metric.true_positive_rate()
    TNR = metric.true_negative_rate()
    bal_acc_nodebiasing_test = 0.5 * (TPR + TNR)
    metrics["Balanced classification accuracy"] = bal_acc_nodebiasing_test
    metrics[
        "Statistical parity difference"] = metric.statistical_parity_difference(
        )
    metrics["Disparate impact"] = metric.disparate_impact()
    metrics[
        "Equal opportunity difference"] = metric.equal_opportunity_difference(
        )
    metrics["Average odds difference"] = metric.average_odds_difference()
    metrics["Theil index"] = metric.theil_index()
    metrics["United Fairness"] = metric.generalized_entropy_index()

    feature = []
    feature_str = "["
    for m in metrics:
        data = round(metrics[m], 4)
        feature.append(data)
        feature_str = feature_str + str(data) + " "
    feature_str = feature_str + "]"

    return feature, feature_str