def getAcc(self, callBack=None, algorithm=None, params=None, atts=None, holdout=None): """ For regression problems, it returns the RMSE and the Q2 For Classification problems, it returns CA and the ConfMat The return is made in a Dict: {"RMSE":0.2,"Q2":0.1,"CA":0.98,"CM":[[TP, FP],[FN,TN]]} For the EvalResults not supported for a specific learner/datase, the respective result will be None if the learner is a dict {"LearnerName":learner, ...} the results will be a dict with results for all Learners and for a consensus made out of those that were stable It some error occurred, the respective values in the Dict will be None parameters: algorithm - list of feature generation algorithms (set dependent features that have to be calculated inside the crossvalidation) params - dictionary of parameters atts - attributes to be removed before learning (e.g. meta etc...) """ self.__log("Starting Calculating MLStatistics") statistics = {} if not self.__areInputsOK(): return None if holdout: self.nExtFolds = 1 if algorithm: self.__log(" Additional features to be calculated inside of cross-validation") for i in algorithm: self.__log(" Algorithm: " + str(i)) for j, v in params.iteritems(): self.__log(" Parameter: " + str(j) + " = " + str(v)) # Set the response type self.responseType = ( self.data.domain.classVar.varType == orange.VarTypes.Discrete and "Classification" or "Regression" ) self.__log(" " + str(self.responseType)) # Create the Train and test sets DataIdxs = None if holdout: self.__log("Using hold out evaluation with " + str(holdout) + "*100 % of data for training") DataIdxs = dataUtilities.SeedDataSampler_holdOut(self.data, holdout) else: DataIdxs = dataUtilities.SeedDataSampler(self.data, self.nExtFolds) # Var for saving each Fols result optAcc = {} results = {} exp_pred = {} nTrainEx = {} nTestEx = {} # Set a dict of learners MLmethods = {} if type(self.learner) == dict: for ml in self.learner: MLmethods[ml] = self.learner[ml] else: MLmethods[self.learner.name] = self.learner models = {} rocs = {} self.__log("Calculating Statistics for MLmethods:") self.__log(" " + str([x for x in MLmethods])) # Check data in advance so that, by chance, it will not fail at the last fold! for foldN in range(self.nExtFolds): trainData = self.data.select(DataIdxs[foldN], negate=1) self.__checkTrainData(trainData) # Optional!! # Order Learners so that PLS is the first sortedML = [ml for ml in MLmethods] if "PLS" in sortedML: sortedML.remove("PLS") sortedML.insert(0, "PLS") stepsDone = 0 nTotalSteps = len(sortedML) * self.nExtFolds for ml in sortedML: self.__log(" > " + str(ml) + "...") try: # Var for saving each Fols result results[ml] = [] exp_pred[ml] = [] models[ml] = [] rocs[ml] = [] nTrainEx[ml] = [] nTestEx[ml] = [] optAcc[ml] = [] logTxt = "" for foldN in range(self.nExtFolds): if type(self.learner) == dict: self.paramList = None trainData = self.data.select(DataIdxs[foldN], negate=1) orig_len = len(trainData.domain.attributes) refs = None methods = [ "rdk_MACCS_keys", "rdk_topo_fps", "rdk_morgan_fps", "rdk_morgan_features_fps", "rdk_atompair_fps", ] train_domain = None # add structural descriptors to the training data (TG) if algorithm: for i in range(len(algorithm)): if algorithm[i] == "structClust": self.__log("Algorithm " + str(i) + ": " + str(algorithm[i])) actData = orange.ExampleTable(trainData.domain) for d in trainData: # only valid for simboosted qsar paper experiments!? if d.getclass() == "2": actData.append(d) refs = structuralClustering.getReferenceStructures( actData, threshold=params["threshold"], minClusterSize=params["minClusterSize"], numThreads=2, ) self.__log( " found " + str(len(refs)) + " reference structures in " + str(len(actData)) + " active structures" ) orig_len = orig_len + (len(refs) * len(methods)) trainData_sim = SimBoostedQSAR.getSimDescriptors(refs, trainData, methods) if i == (len(algorithm) - 1): trainData = dataUtilities.attributeDeselectionData(trainData_sim, atts) else: trainData = dataUtilities.attributeDeselectionData(trainData_sim, []) elif algorithm[i] == "ECFP": self.__log("Algorithm " + str(i) + ": " + str(algorithm[i])) trainData_ecfp = getCinfonyDesc.getCinfonyDescResults(trainData, ["rdk.FingerPrints"]) train_domain = trainData_ecfp.domain if i == (len(algorithm) - 1): trainData = dataUtilities.attributeDeselectionData(trainData_ecfp, atts) else: trainData = dataUtilities.attributeDeselectionData(trainData_ecfp, []) else: self.__log("Algorithm " + str(i) + ": " + str(algorithm[i])) trainData_structDesc = getStructuralDesc.getStructuralDescResult( trainData, algorithm[i], params["minsup"] ) if i == (len(algorithm) - 1): trainData = dataUtilities.attributeDeselectionData(trainData_structDesc, atts) else: trainData = dataUtilities.attributeDeselectionData(trainData_structDesc, []) # trainData.save("/home/girschic/proj/AZ/ProjDev/train.tab") testData = self.data.select(DataIdxs[foldN]) # calculate the feature values for the test data (TG) if algorithm: for i in range(len(algorithm)): if algorithm[i] == "structClust": self.__log(str(algorithm[i])) testData_sim = SimBoostedQSAR.getSimDescriptors(refs, testData, methods) if i == (len(algorithm) - 1): testData = dataUtilities.attributeDeselectionData(testData_sim, atts) else: testData = dataUtilities.attributeDeselectionData(testData_sim, []) elif algorithm[i] == "ECFP": self.__log(str(algorithm[i])) # testData_ecfp = orange.ExampleTable(train_domain) tmp_dat = [] for d in testData: tmp = getCinfonyDesc.getRdkFPforTestInstance(train_domain, d) tmp_dat.append(tmp) testData_ecfp = orange.ExampleTable(tmp_dat[0].domain, tmp_dat) if i == (len(algorithm) - 1): # print "removing atts" testData = dataUtilities.attributeDeselectionData(testData_ecfp, atts) else: # print "removing no atts" testData = dataUtilities.attributeDeselectionData(testData_ecfp, []) else: cut_off = orig_len - len(atts) smarts = trainData.domain.attributes[cut_off:] self.__log(" Number of structural features added: " + str(len(smarts))) testData_structDesc = getStructuralDesc.getSMARTSrecalcDesc(testData, smarts) if i == (len(algorithm) - 1): testData = dataUtilities.attributeDeselectionData(testData_structDesc, atts) else: testData = dataUtilities.attributeDeselectionData(testData_structDesc, []) # testData.save("/home/girschic/proj/AZ/ProjDev/test.tab") nTrainEx[ml].append(len(trainData)) nTestEx[ml].append(len(testData)) # Test if trainsets inside optimizer will respect dataSize criterias. # if not, don't optimize, but still train the model dontOptimize = False if self.responseType != "Classification" and (len(trainData) * (1 - 1.0 / self.nInnerFolds) < 20): dontOptimize = True else: tmpDataIdxs = dataUtilities.SeedDataSampler(trainData, self.nInnerFolds) tmpTrainData = trainData.select(tmpDataIdxs[0], negate=1) if not self.__checkTrainData(tmpTrainData, False): dontOptimize = True if dontOptimize: logTxt += ( " Fold " + str(foldN) + ": Too few compounds to optimize model hyper-parameters\n" ) self.__log(logTxt) if trainData.domain.classVar.varType == orange.VarTypes.Discrete: res = orngTest.crossValidation( [MLmethods[ml]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator=random.randint(0, 100), ) CA = evalUtilities.CA(res)[0] optAcc[ml].append(CA) else: res = orngTest.crossValidation( [MLmethods[ml]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator=random.randint(0, 100), ) R2 = evalUtilities.R2(res)[0] optAcc[ml].append(R2) else: runPath = miscUtilities.createScratchDir( baseDir=AZOC.NFS_SCRATCHDIR, desc="AccWOptParam", seed=id(trainData) ) # self.__log(" run path:"+str(runPath)) trainData.save(os.path.join(runPath, "trainData.tab")) tunedPars = paramOptUtilities.getOptParam( learner=MLmethods[ml], trainDataFile=os.path.join(runPath, "trainData.tab"), paramList=self.paramList, useGrid=False, verbose=self.verbose, queueType=self.queueType, runPath=runPath, nExtFolds=None, nFolds=self.nInnerFolds, logFile=self.logFile, getTunedPars=True, ) if not MLmethods[ml] or not MLmethods[ml].optimized: self.__log( " WARNING: GETACCWOPTPARAM: The learner " + str(ml) + " was not optimized." ) self.__log(" It will be ignored") # self.__log(" It will be set to default parameters") self.__log(" DEBUG can be done in: " + runPath) # Set learner back to default # MLmethods[ml] = MLmethods[ml].__class__() raise Exception("The learner " + str(ml) + " was not optimized.") else: if trainData.domain.classVar.varType == orange.VarTypes.Discrete: optAcc[ml].append(tunedPars[0]) else: res = orngTest.crossValidation( [MLmethods[ml]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator=random.randint(0, 100), ) R2 = evalUtilities.R2(res)[0] optAcc[ml].append(R2) miscUtilities.removeDir(runPath) # Train the model model = MLmethods[ml](trainData) models[ml].append(model) # Test the model if self.responseType == "Classification": results[ml].append( ( evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model), ) ) roc = self.aroc(testData, [model]) rocs[ml].append(roc) else: local_exp_pred = [] for ex in testData: local_exp_pred.append((ex.getclass(), model(ex))) results[ml].append( (evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred)) ) # Save the experimental value and correspondent predicted value exp_pred[ml] += local_exp_pred if callBack: stepsDone += 1 if not callBack((100 * stepsDone) / nTotalSteps): return None res = self.createStatObj( results[ml], exp_pred[ml], nTrainEx[ml], nTestEx[ml], self.responseType, self.nExtFolds, logTxt, rocs[ml], ) if self.verbose > 0: print "UnbiasedAccuracyGetter!Results " + ml + ":\n" pprint(res) if not res: raise Exception("No results available!") statistics[ml] = copy.deepcopy(res) self.__writeResults(statistics) self.__log(" OK") except: print "Unexpected error:", print sys.exc_info()[0] print sys.exc_info()[1] self.__log(" Learner " + str(ml) + " failed to create/optimize the model!") res = self.createStatObj( results[ml], exp_pred[ml], nTrainEx[ml], nTestEx[ml], self.responseType, self.nExtFolds, logTxt, rocs[ml], ) statistics[ml] = copy.deepcopy(res) self.__writeResults(statistics) if not statistics or len(statistics) < 1: self.__log("ERROR: No statistics to return!") return None elif len(statistics) > 1: # We still need to build a consensus model out of the stable models # ONLY if there are more that one model stable! # When only one or no stable models, build a consensus based on all models consensusMLs = {} for modelName in statistics: StabilityValue = statistics[modelName]["StabilityValue"] if StabilityValue is not None and statistics[modelName]["stable"]: consensusMLs[modelName] = copy.deepcopy(statistics[modelName]) self.__log( "Found " + str(len(consensusMLs)) + " stable MLmethods out of " + str(len(statistics)) + " MLmethods." ) if len(consensusMLs) <= 1: # we need more models to build a consensus! consensusMLs = {} for modelName in statistics: consensusMLs[modelName] = copy.deepcopy(statistics[modelName]) if len(consensusMLs) >= 2: # Var for saving each Fols result Cresults = [] Cexp_pred = [] CnTrainEx = [] CnTestEx = [] self.__log( "Calculating the statistics for a Consensus model based on " + str([ml for ml in consensusMLs]) ) for foldN in range(self.nExtFolds): if self.responseType == "Classification": CLASS0 = str(self.data.domain.classVar.values[0]) CLASS1 = str(self.data.domain.classVar.values[1]) exprTest0 = "(0" for ml in consensusMLs: exprTest0 += "+( " + ml + " == " + CLASS0 + " )*" + str(optAcc[ml][foldN]) + " " exprTest0 += ")/IF0(sum([False" for ml in consensusMLs: exprTest0 += ", " + ml + " == " + CLASS0 + " " exprTest0 += "]),1)" exprTest1 = exprTest0.replace(CLASS0, CLASS1) expression = [exprTest0 + " >= " + exprTest1 + " -> " + CLASS0, " -> " + CLASS1] else: Q2sum = sum([optAcc[ml][foldN] for ml in consensusMLs]) expression = "(1 / " + str(Q2sum) + ") * (0" for ml in consensusMLs: expression += " + " + str(optAcc[ml][foldN]) + " * " + ml + " " expression += ")" testData = self.data.select(DataIdxs[foldN]) CnTestEx.append(len(testData)) consensusClassifiers = {} for learnerName in consensusMLs: consensusClassifiers[learnerName] = models[learnerName][foldN] model = AZorngConsensus.ConsensusClassifier(classifiers=consensusClassifiers, expression=expression) CnTrainEx.append(model.NTrainEx) # Test the model if self.responseType == "Classification": Cresults.append( ( evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model), ) ) else: local_exp_pred = [] for ex in testData: local_exp_pred.append((ex.getclass(), model(ex))) Cresults.append( (evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred)) ) # Save the experimental value and correspondent predicted value Cexp_pred += local_exp_pred res = self.createStatObj(Cresults, Cexp_pred, CnTrainEx, CnTestEx, self.responseType, self.nExtFolds) statistics["Consensus"] = copy.deepcopy(res) statistics["Consensus"]["IndividualStatistics"] = copy.deepcopy(consensusMLs) self.__writeResults(statistics) self.__log("Returned multiple ML methods statistics.") return statistics # By default return the only existing statistics! self.__writeResults(statistics) self.__log("Returned only one ML method statistics.") return statistics[statistics.keys()[0]]
def getProbabilitiesAsAttribute(self, algorithm=None, minsup=None, atts=None): """ For regression problems, it returns the RMSE and the Q2 For Classification problems, it returns CA and the ConfMat The return is made in a Dict: {"RMSE":0.2,"Q2":0.1,"CA":0.98,"CM":[[TP, FP],[FN,TN]]} For the EvalResults not supported for a specific learner/datase, the respective result will be None if the learner is a dict {"LearnerName":learner, ...} the results will be a dict with results for all Learners and for a consensus made out of those that were stable It some error occurred, the respective values in the Dict will be None parameters: algo - key for the structural feature generation algorithm (set dependent structural features that have to be calculated inside the crossvalidation) minsup - minimum support for the algorithm atts - attributes to be removed before learning (e.g. meta etc...) """ self.__log("Starting Calculating MLStatistics") statistics = {} if not self.__areInputsOK(): return None if algorithm: self.__log(" Additional features to be calculated inside of cross-validation") self.__log(" Algorithm for structural features: " + str(algorithm)) self.__log(" Minimum support parameter: " + str(minsup)) # Set the response type self.responseType = ( self.data.domain.classVar.varType == orange.VarTypes.Discrete and "Classification" or "Regression" ) self.__log(" " + str(self.responseType)) # Create the Train and test sets DataIdxs = dataUtilities.SeedDataSampler(self.data, self.nExtFolds) # Var for saving each Fols result optAcc = {} results = {} exp_pred = {} nTrainEx = {} nTestEx = {} # Set a dict of learners MLmethods = {} if type(self.learner) == dict: for ml in self.learner: MLmethods[ml] = self.learner[ml] else: MLmethods[self.learner.name] = self.learner models = {} rocs = {} self.__log("Calculating Statistics for MLmethods:") self.__log(" " + str([x for x in MLmethods])) # Check data in advance so that, by chance, it will not faill at the last fold! for foldN in range(self.nExtFolds): trainData = self.data.select(DataIdxs[foldN], negate=1) self.__checkTrainData(trainData) # Optional!! # Order Learners so that PLS is the first sortedML = [ml for ml in MLmethods] if "PLS" in sortedML: sortedML.remove("PLS") sortedML.insert(0, "PLS") for ml in sortedML: self.__log(" > " + str(ml) + "...") try: # Var for saving each Fols result results[ml] = [] exp_pred[ml] = [] models[ml] = [] rocs[ml] = [] nTrainEx[ml] = [] nTestEx[ml] = [] optAcc[ml] = [] ### mods TG prediction_attribute = orange.FloatVariable("class_prob") domain = [data.domain.attributes, prediction_attribute, data.domain.classvar] data_new = orange.ExampleTable(domain) logTxt = "" for foldN in range(self.nExtFolds): if type(self.learner) == dict: self.paramList = None trainData = self.data.select(DataIdxs[foldN], negate=1) orig_len = len(trainData.domain.attributes) # add structural descriptors to the training data (TG) if algorithm: trainData_structDesc = getStructuralDesc.getStructuralDescResult(trainData, algorithm, minsup) trainData = dataUtilities.attributeDeselectionData(trainData_structDesc, atts) testData = self.data.select(DataIdxs[foldN]) # print "IDX: ", # print DataIdxs[foldN] # calculate the feature values for the test data (TG) if algorithm: cut_off = orig_len - len(atts) smarts = trainData.domain.attributes[cut_off:] self.__log(" Number of structural features added: " + str(len(smarts))) testData_structDesc = getStructuralDesc.getSMARTSrecalcDesc(testData, smarts) testData = dataUtilities.attributeDeselectionData(testData_structDesc, atts) nTrainEx[ml].append(len(trainData)) nTestEx[ml].append(len(testData)) # Test if trainsets inside optimizer will respect dataSize criterias. # if not, don't optimize, but still train the model dontOptimize = False if self.responseType != "Classification" and (len(trainData) * (1 - 1.0 / self.nInnerFolds) < 20): dontOptimize = True else: tmpDataIdxs = dataUtilities.SeedDataSampler(trainData, self.nInnerFolds) tmpTrainData = trainData.select(tmpDataIdxs[0], negate=1) if not self.__checkTrainData(tmpTrainData, False): dontOptimize = True if dontOptimize: logTxt += ( " Fold " + str(foldN) + ": Too few compounds to optimize model hyper-parameters\n" ) self.__log(logTxt) if trainData.domain.classVar.varType == orange.VarTypes.Discrete: res = orngTest.crossValidation( [MLmethods[ml]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator=random.randint(0, 100), ) CA = evalUtilities.CA(res)[0] optAcc[ml].append(CA) else: res = orngTest.crossValidation( [MLmethods[ml]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator=random.randint(0, 100), ) R2 = evalUtilities.R2(res)[0] optAcc[ml].append(R2) else: runPath = miscUtilities.createScratchDir( baseDir=AZOC.NFS_SCRATCHDIR, desc="AccWOptParam", seed=id(trainData) ) trainData.save(os.path.join(runPath, "trainData.tab")) tunedPars = paramOptUtilities.getOptParam( learner=MLmethods[ml], trainDataFile=os.path.join(runPath, "trainData.tab"), paramList=self.paramList, useGrid=False, verbose=self.verbose, queueType=self.queueType, runPath=runPath, nExtFolds=None, nFolds=self.nInnerFolds, logFile=self.logFile, getTunedPars=True, ) if not MLmethods[ml] or not MLmethods[ml].optimized: self.__log( " WARNING: GETACCWOPTPARAM: The learner " + str(ml) + " was not optimized." ) self.__log(" It will be ignored") # self.__log(" It will be set to default parameters") self.__log(" DEBUG can be done in: " + runPath) # Set learner back to default # MLmethods[ml] = MLmethods[ml].__class__() raise Exception("The learner " + str(ml) + " was not optimized.") else: if trainData.domain.classVar.varType == orange.VarTypes.Discrete: optAcc[ml].append(tunedPars[0]) else: res = orngTest.crossValidation( [MLmethods[ml]], trainData, folds=5, strat=orange.MakeRandomIndices.StratifiedIfPossible, randomGenerator=random.randint(0, 100), ) R2 = evalUtilities.R2(res)[0] optAcc[ml].append(R2) miscUtilities.removeDir(runPath) # Train the model model = MLmethods[ml](trainData) models[ml].append(model) # Test the model if self.responseType == "Classification": results[ml].append( ( evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model), ) ) roc = self.aroc(testData, [model]) rocs[ml].append(roc) # save the prediction probabilities else: local_exp_pred = [] for ex in testData: local_exp_pred.append((ex.getclass(), model(ex))) results[ml].append( (evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred)) ) # Save the experimental value and correspondent predicted value exp_pred[ml] += local_exp_pred res = self.createStatObj( results[ml], exp_pred[ml], nTrainEx[ml], nTestEx[ml], self.responseType, self.nExtFolds, logTxt, rocs[ml], ) if self.verbose > 0: print "UnbiasedAccuracyGetter!Results " + ml + ":\n" pprint(res) if not res: raise Exception("No results available!") statistics[ml] = copy.deepcopy(res) self.__writeResults(statistics) self.__log(" OK") except: self.__log(" Learner " + str(ml) + " failed to create/optimize the model!") res = self.createStatObj() statistics[ml] = copy.deepcopy(res) self.__writeResults(statistics) if not statistics or len(statistics) < 1: self.__log("ERROR: No statistics to return!") return None elif len(statistics) > 1: # We still need to build a consensus model out of the stable models # ONLY if there are more that one model stable! # When only one or no stable models, build a consensus based on all models consensusMLs = {} for modelName in statistics: StabilityValue = statistics[modelName]["StabilityValue"] if StabilityValue is not None and statistics[modelName]["stable"]: consensusMLs[modelName] = copy.deepcopy(statistics[modelName]) self.__log( "Found " + str(len(consensusMLs)) + " stable MLmethods out of " + str(len(statistics)) + " MLmethods." ) if len(consensusMLs) <= 1: # we need more models to build a consensus! consensusMLs = {} for modelName in statistics: consensusMLs[modelName] = copy.deepcopy(statistics[modelName]) if len(consensusMLs) >= 2: # Var for saving each Fols result Cresults = [] Cexp_pred = [] CnTrainEx = [] CnTestEx = [] self.__log( "Calculating the statistics for a Consensus model based on " + str([ml for ml in consensusMLs]) ) for foldN in range(self.nExtFolds): if self.responseType == "Classification": CLASS0 = str(self.data.domain.classVar.values[0]) CLASS1 = str(self.data.domain.classVar.values[1]) exprTest0 = "(0" for ml in consensusMLs: exprTest0 += "+( " + ml + " == " + CLASS0 + " )*" + str(optAcc[ml][foldN]) + " " exprTest0 += ")/IF0(sum([False" for ml in consensusMLs: exprTest0 += ", " + ml + " == " + CLASS0 + " " exprTest0 += "]),1)" exprTest1 = exprTest0.replace(CLASS0, CLASS1) expression = [exprTest0 + " >= " + exprTest1 + " -> " + CLASS0, " -> " + CLASS1] else: Q2sum = sum([optAcc[ml][foldN] for ml in consensusMLs]) expression = "(1 / " + str(Q2sum) + ") * (0" for ml in consensusMLs: expression += " + " + str(optAcc[ml][foldN]) + " * " + ml + " " expression += ")" testData = self.data.select(DataIdxs[foldN]) CnTestEx.append(len(testData)) consensusClassifiers = {} for learnerName in consensusMLs: consensusClassifiers[learnerName] = models[learnerName][foldN] model = AZorngConsensus.ConsensusClassifier(classifiers=consensusClassifiers, expression=expression) CnTrainEx.append(model.NTrainEx) # Test the model if self.responseType == "Classification": Cresults.append( ( evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model), ) ) else: local_exp_pred = [] for ex in testData: local_exp_pred.append((ex.getclass(), model(ex))) Cresults.append( (evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred)) ) # Save the experimental value and correspondent predicted value Cexp_pred += local_exp_pred res = self.createStatObj(Cresults, Cexp_pred, CnTrainEx, CnTestEx, self.responseType, self.nExtFolds) statistics["Consensus"] = copy.deepcopy(res) statistics["Consensus"]["IndividualStatistics"] = copy.deepcopy(consensusMLs) self.__writeResults(statistics) self.__log("Returned multiple ML methods statistics.") return statistics # By default return the only existing statistics! self.__writeResults(statistics) self.__log("Returned only one ML method statistics.") return statistics[statistics.keys()[0]]
def getAcc(self, algorithm = None, minsup = None, atts = None): """ For regression problems, it returns the RMSE and the R2 For Classification problems, it returns CA and the ConfMat The return is made in a Dict: {"RMSE":0.2,"R2":0.1,"CA":0.98,"CM":[[TP, FP],[FN,TN]]} For the EvalResults not supported for a specific learner/datase, the respective result will be None if the learner is a dict {"LearnerName":learner, ...} the results will be a dict with results for all Learners and for a consensus made out of those that were stable It some error occurred, the respective values in the Dict will be None """ self.__log("Starting Calculating MLStatistics") statistics = {} if not self.__areInputsOK(): return None if (self.algorithm): self.__log(" Additional structural features to be calculated inside of cross-validation") self.__log(" Algorithm for structural features: "+str(self.algorithm)) self.__log(" Minimum support parameter: "+str(self.minsup)) # Set the response type responseType = self.data.domain.classVar.varType == orange.VarTypes.Discrete and "Classification" or "Regression" self.__log(" "+str(responseType)) #Create the Train and test sets DataIdxs = dataUtilities.SeedDataSampler(self.data, self.nExtFolds) #Var for saving each Fols result results = {} exp_pred = {} #Set a dict of learners MLmethods = {} if type(self.learner) == dict: for ml in self.learner: MLmethods[ml] = self.learner[ml] else: MLmethods[self.learner.name] = self.learner models={} self.__log("Calculating Statistics for MLmethods:") self.__log(" "+str([x for x in MLmethods])) for ml in MLmethods: self.__log(" > "+str(ml)+"...") try: #Var for saving each Fols result results[ml] = [] exp_pred[ml] = [] models[ml] = [] for foldN in range(self.nExtFolds): if type(self.learner) == dict: self.paramList = None trainData = self.data.select(DataIdxs[foldN],negate=1) orig_len = len(trainData.domain.attributes) if (self.algorithm): # add structural descriptors to the training data (TG) trainData_structDesc = getStructuralDesc.getStructuralDescResult(trainData, self.algorithm, self.minsup) trainData = dataUtilities.attributeDeselectionData(trainData_structDesc, self.atts) runPath = miscUtilities.createScratchDir(baseDir = AZOC.NFS_SCRATCHDIR, desc = "AccWOptParam") trainData.save(os.path.join(runPath,"trainData.tab")) testData = self.data.select(DataIdxs[foldN]) if (self.algorithm): # calculate the feature values for the test data (TG) cut_off = orig_len - len(self.atts) smarts = trainData.domain.attributes[cut_off:] self.__log(" Number of structural features added: "+str(len(smarts))) testData_structDesc = getStructuralDesc.getSMARTSrecalcDesc(testData,smarts) testData = dataUtilities.attributeDeselectionData(testData_structDesc, self.atts) paramOptUtilities.getOptParam( learner = MLmethods[ml], trainDataFile = os.path.join(runPath,"trainData.tab"), paramList = self.paramList, useGrid = False, verbose = self.verbose, queueType = self.queueType, runPath = runPath, nExtFolds = None, nFolds = self.nInnerFolds ) if not MLmethods[ml].optimized: self.__log(" The learner "+str(ml)+" was not optimized.") raise Exception("The learner "+str(ml)+" was not optimized.") miscUtilities.removeDir(runPath) #Train the model model = MLmethods[ml](trainData) models[ml].append(model) #Test the model if responseType == "Classification": results[ml].append((evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model) ) ) else: local_exp_pred = [] for ex in testData: local_exp_pred.append((ex.getclass(), model(ex))) results[ml].append((evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred) ) ) #Save the experimental value and correspondent predicted value exp_pred[ml] += local_exp_pred res = self.createStatObj(results[ml], exp_pred[ml], responseType, self.nExtFolds) if self.verbose > 0: print "AccWOptParamGetter!Results "+ml+":\n" pprint(res) if not res: raise Exception("No results available!") statistics[ml] = res.copy() self.__writeResults(res) self.__log(" OK") except: self.__log(" Learner "+str(ml)+" failed to optimize!") res = self.createStatObj() statistics[ml] = res.copy() if not statistics or len(statistics) < 1: self.__log("ERROR: No statistics to return!") return None elif len(statistics) > 1: #We still need to build a consensus model out of the stable models # ONLY if there are more that one model stable! stableML={} for modelName in statistics: if statistics[modelName]["StabilityValue"] < AZOC.QSARSTABILITYTHRESHOLD: # Select only stable models stableML[modelName] = statistics[modelName].copy() if len(stableML) >= 2: self.__log("Found "+str(len(stableML))+" stable MLmethods out of "+str(len(statistics))+" MLmethods.") if responseType == "Classification": CLASS0 = str(self.data.domain.classVar.values[0]) CLASS1 = str(self.data.domain.classVar.values[1]) exprTest0 = "(0" for ml in stableML: exprTest0 += "+( "+ml+" == "+CLASS0+" )*"+str(stableML[ml]["CA"])+" " exprTest0 += ")/IF0(sum([False" for ml in stableML: exprTest0 += ", "+ml+" == "+CLASS0+" " exprTest0 += "]),1)" exprTest1 = exprTest0.replace(CLASS0,CLASS1) expression = [exprTest0+" >= "+exprTest1+" -> "+CLASS0," -> "+CLASS1] else: R2sum = sum([stableML[ml]["R2"] for ml in stableML]) expression = "(1 / "+str(R2sum)+") * (0" for ml in stableML: expression += " + "+str(stableML[ml]["R2"])+" * "+ml+" " expression += ")" #Var for saving each Fols result Cresults = [] Cexp_pred = [] self.__log("Calculating the statistics for a Consensus model") for foldN in range(self.nExtFolds): testData = self.data.select(DataIdxs[foldN]) consensusClassifiers = {} for learnerName in stableML: consensusClassifiers[learnerName] = models[learnerName][foldN] model = AZorngConsensus.ConsensusClassifier(classifiers = consensusClassifiers, expression = expression) #Test the model if responseType == "Classification": Cresults.append((evalUtilities.getClassificationAccuracy(testData, model), evalUtilities.getConfMat(testData, model) ) ) else: local_exp_pred = [] for ex in testData: local_exp_pred.append((ex.getclass(), model(ex))) Cresults.append((evalUtilities.calcRMSE(local_exp_pred), evalUtilities.calcRsqrt(local_exp_pred) ) ) #Save the experimental value and correspondent predicted value Cexp_pred += local_exp_pred res = self.createStatObj(Cresults, Cexp_pred, responseType, self.nExtFolds) statistics["Consensus"] = res.copy() statistics["Consensus"]["IndividualStatistics"] = stableML.copy() self.__writeResults(statistics) self.__log("Returned multiple ML methods statistics.") return statistics #By default return the only existing statistics! self.__writeResults(statistics) self.__log("Returned only one ML method statistics.") return statistics[statistics.keys()[0]]