コード例 #1
0
def main(argv=None):
    # mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
    train_data = matfile_reader.dataset_reader(
        r'G:\04 实验数据\02 实验台实验数据\实验数据_20180119\bearing_dataset_2000.mat')
    # train_data = pd.read_excel("traindataset.xlsx")
    print("train dateset read over")
    # test_data = pd.read_excel("E:\\故障诊断实验数据\\实验数据_20171201\\原始数据_数据集\\test_dataset.xlsx")

    train_samples, train_labels, data_tag = data_preprocess(train_data)
    train(train_samples, train_labels, data_tag)
コード例 #2
0
def main(argv=None):
    # test_data = pd.read_excel("testdataset.xlsx")
    test_data = matfile_reader.dataset_reader(r'G:\04 实验数据\02 实验台实验数据\实验数据_20180119\bearing_dataset_2000.mat', train=False)
    # test_data=test_data[0:10000,:]
    print("train dateset read over")

    # test_data = pd.read_excel("E:\\故障诊断实验数据\\实验数据_20171201\\原始数据_数据集\\test_dataset.xlsx")

    test_samples, test_labels, data_tag = AlexNet_1d_diagnosis_train.data_preprocess(test_data)

    evaluate(test_samples, test_labels, data_tag)
コード例 #3
0
import scipy.io as scio
import numpy as np
from AlexNet_1d_diagnosis import  matfile_reader

#parameters
noise_factor=0.5

#read data
data_path='E:/bearing_dataset_1024.mat'
train_dataset=matfile_reader.dataset_reader(data_path)
test_dataset=matfile_reader.dataset_reader(data_path,train=False)

train_data_sample=train_dataset[:,0:1024]
train_data_label=train_dataset[:,-1]

test_data_sample=test_dataset[:,0:1024]
test_data_label=test_dataset[:,-1]

#add noise to test datasamples and train datasamples
train_noise=train_data_sample+noise_factor*np.random.randn(*train_data_sample.shape)
test_noise=test_data_sample+noise_factor*np.random.randn(*test_data_sample.shape)

datasample_train_noise=np.column_stack((train_noise,train_data_label))
datasample_test_noise=np.column_stack((test_noise,test_data_label))

#save processed data
scio.savemat('E:/bearing_dataset_1024_with_noise.mat',{'traindata':datasample_train_noise,'testdata':datasample_test_noise})
コード例 #4
0
import scipy.io as scio
import pandas as pd
from AlexNet_1d_diagnosis import matfile_reader
import numpy as np

train_data = matfile_reader.dataset_reader("E:\\bearing_dataset_2000.mat")
test_data = matfile_reader.dataset_reader('E:\\bearing_dataset_2000.mat',
                                          train=False)

np.savetxt('train_data.csv', train_data, delimiter=',')
np.savetxt('test_data.csv', test_data, delimiter=',')