def __init__(self): super().__init__() # 取指数成分股实例 self.index_member_obj = GetIndexMember() # 取K线数据实例 self.data_class = GetKlineData() # 取指标实例 self.indicator = SaveGetIndicator()
def __init__(self): super().__init__() # 取指数成分股实例 self.index_member_obj = GetIndexMember() # 取K线数据实例 self.data_class = GetKlineData() # 取指标实例 self.indicator = SaveGetIndicator() # 取指标数据 self.ma5 = self.indicator.get_indicator('ma5') self.ma10 = self.indicator.get_indicator('ma10') self.now = time.time()
def __init__(self, strategy_name='ma_strategy'): super().__init__() self.strategy_name = strategy_name # 取指数成分股实例 self.index_member_obj = GetIndexMember() # 取K线数据实例 self.data_class = GetKlineData() # 取指标实例 self.indicator = SaveGetIndicator() # 取指标数据 self.ma5 = self.indicator.get_indicator('ma5') self.ma10 = self.indicator.get_indicator('ma10') self.now = time.time() Environment.logger = Logger(strategy_name)
class MaStrategy(StrategyBase): def __init__(self, strategy_name='ma_strategy'): """ 用户定义类变量 取本地数据 :param strategy_name: """ super().__init__(strategy_name=strategy_name) # 取指数成分股实例 self.index_member_obj = GetIndexMember() # 取K线数据实例 self.data_class = GetKlineData() # 取指标实例 self.indicator = SaveGetIndicator() # 取指标数据 self.ma5 = self.indicator.get_indicator('ma5') self.ma10 = self.indicator.get_indicator('ma10') self.now = time.time() Environment.logger = Logger(strategy_name) def initialize(self): # 设置运行模式,回测或者交易 self.run_mode = RunMode.BACKTESTING.value # 设置回测资金账号 self.account = ['test0'] # 设置回测资金账号资金量 self.capital = {'test0': 2000000} # 设置回测基准 self.benchmark = '000300.SH' # 设置复权方式 self.rights_adjustment = RightsAdjustment.FROWARD.value # 设置回测起止时间 self.start = datetime(2018, 1, 1) self.end = datetime(2019, 1, 1) # 设置运行周期 self.period = 'daily' self.index_member_obj.get_all_index_members() _, index_members_all = self.index_member_obj.get_index_members( '000300.SH') self.universe = index_members_all # 设置在运行前是否缓存日线,分钟线等各个周期数据 self.daily_data_cache = True Environment.logger.info(self.universe) # 回测滑点设置,按固定值0.01,20-0.01 = 19.99;百分比0.01,20*(1-0.01) = 19.98;平仓时用'+' self.set_slippage(stock_type=StockType.STOCK.value, slippage_type=SlippageType.SLIPPAGE_FIX.value, value=0.01) # 回测股票手续费和印花税,卖出印花税,千分之一;开仓手续费,万分之三;平仓手续费,万分之三,最低手续费,5元 # 沪市,卖出有万分之二的过户费,加入到卖出手续费 self.set_commission(stock_type=StockType.STOCK_SH.value, tax=0.001, open_commission=0.0003, close_commission=0.00032, close_today_commission=0, min_commission=5) # 深市不加过户费 self.set_commission(stock_type=StockType.STOCK_SZ.value, tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5) def handle_bar(self, event): Environment.logger.info('self.time_tag', self.time_tag, datetime.now(), (time.time() - self.now) * 1000) Environment.logger.debug(len(Environment.bar_position_data_list)) # 取当前bar的持仓情况 with Timer(True): available_position_dict = {} for position in Environment.bar_position_data_list: available_position_dict[ position.instrument + '.' + position.exchange] = position.position - position.frozen index_member_list = self.index_member_obj.get_index_member_in_date( self.time_tag) close_price_all = self.data_class.get_market_data( Environment.daily_data, stock_code=index_member_list, field=['close'], start=self.time_tag, end=self.time_tag) # 循环遍历股票池 for stock in index_member_list: # 取当前股票的收盘价 close_price = close_price_all['close'][stock] if close_price: ma5 = self.ma5[stock][self.time_tag] ma20 = self.ma10[stock][self.time_tag] if ma5 and ma20: # 如果5日均线突破20日均线,并且没有持仓,则买入这只股票100股,以收盘价为指定价交易 if ma5 > ma20 and stock not in available_position_dict.keys( ) and stock in index_member_list: Trade(self).order_shares( stock_code=stock, shares=100, price_type='fix', order_price=close_price, account_id=self.account[0]) Environment.logger.info('buy', stock, -1, 'fix', close_price, self.account) # 如果20日均线突破5日均线,并且有持仓,则卖出这只股票100股,以收盘价为指定价交易 elif ma5 < ma20 and stock in available_position_dict.keys( ): Trade(self).order_shares( stock_code=stock, shares=-100, price_type='fix', order_price=close_price, account_id=self.account[0]) Environment.logger.info('sell', stock, -1, 'fix', close_price, self.account) for stock in available_position_dict.keys(): if stock not in index_member_list: Trade(self).order_shares(stock_code=stock, shares=-100, price_type='fix', order_price=close_price, account_id=self.account[0]) Environment.logger.info('sell not in index_member_list', stock, -1, 'fix', close_price, self.account) self.now = time.time()
def save_ma(self, num): save_get_indicator = SaveGetIndicator() ma5 = self.kline['close'].rolling(num).mean() save_get_indicator.save_indicator('ma' + str(num), ma5) pass
return fit_result.resid self.raw_data = self.raw_data.apply(cal_resid, args=( index_class_obj, share_data, method, ), axis=1) return self.raw_data if __name__ == '__main__': indicator_name = 'ma5' factor_name = 'factor_' + indicator_name indicator_data = SaveGetIndicator().get_indicator(indicator_name) factor_pre_obj = FactorPreProcessing(indicator_data) # 可根据时间和股票list过滤数据 data_filter = factor_pre_obj.data_filter() # 去极值方法,四种 extreme_data = factor_pre_obj.extreme_processing( dict(std={'sigma_multiple': 3})) # extreme_data = factor_pre_obj.extreme_processing(dict(mad={'median_multiple': 1.483})) # extreme_data = factor_pre_obj.extreme_processing(dict(quantile={'quantile_min': 0.025, 'quantile_max': 0.975})) # extreme_data = factor_pre_obj.extreme_processing(dict(box_plot={'median_multiple': 3})) # 中性化方法,可选择行业和流通市值中性 neutralize_data = factor_pre_obj.neutralize_processing( dict(neutralize_method=[ NeutralizeMethod.INDUSTRY.value,
fit_result = model.fit() # 残差作为中性化后的数据 return fit_result.resid self.raw_data = self.raw_data.apply(cal_resid, args=( index_class_obj, share_data, method, ), axis=1) return self.raw_data if __name__ == '__main__': indicator_data = SaveGetIndicator().get_indicator('ma10') factor_pre_obj = FactorPreProcessing(indicator_data) # 可根据时间和股票list过滤数据 data_filter = factor_pre_obj.data_filter() # 去极值方法,四种 extreme_data = factor_pre_obj.extreme_processing( dict(std={'sigma_multiple': 3})) # extreme_data = factor_pre_obj.extreme_processing(dict(mad={'median_multiple': 1.483})) # extreme_data = factor_pre_obj.extreme_processing(dict(quantile={'quantile_min': 0.025, 'quantile_max': 0.975})) # extreme_data = factor_pre_obj.extreme_processing(dict(box_plot={'median_multiple': 3})) # 中性化方法,可选择行业和流通市值中性 neutralize_data = factor_pre_obj.neutralize_processing( dict(neutralize_method=[ NeutralizeMethod.INDUSTRY.value,
class MaStrategy(StrategyBase): def __init__(self): super().__init__() # 取指数成分股实例 self.index_member_obj = GetIndexMember() # 取K线数据实例 self.data_class = GetKlineData() # 取指标实例 self.indicator = SaveGetIndicator() def initialize(self): # 设置运行模式,回测或者交易 self.run_mode = RunMode.BACKTESTING.value # 设置回测资金账号 self.account = ['test0', 'test1'] # 设置回测资金账号资金量 self.capital = {'test0': 2000000, 'test1': 1000} # 设置回测基准 self.benchmark = '000300.SH' # 设置复权方式 self.rights_adjustment = RightsAdjustment.NONE.value # 设置回测起止时间 self.start = datetime(2018, 1, 1) self.end = datetime(2019, 1, 1) # 设置运行周期 self.period = 'daily' _, index_members_all = self.index_member_obj.get_index_members( '000300.SH') self.universe = index_members_all # 设置在运行前是否缓存日线,分钟线等各个周期数据 self.daily_data_cache = True print(self.universe) # 回测滑点设置,按固定值0.01,20-0.01 = 19.99;百分比0.01,20*(1-0.01) = 19.98;平仓时用'+' self.set_slippage(stock_type=StockType.STOCK.value, slippage_type=SlippageType.SLIPPAGE_FIX.value, value=0.01) # 回测股票手续费和印花税,卖出印花税,千分之一;开仓手续费,万分之三;平仓手续费,万分之三,最低手续费,5元 # 沪市,卖出有万分之二的过户费,加入到卖出手续费 self.set_commission(stock_type=StockType.STOCK_SH.value, tax=0.001, open_commission=0.0003, close_commission=0.0003, close_today_commission=0, min_commission=5) # 深市不加过户费 self.set_commission(stock_type=StockType.STOCK_SZ.value, tax=0.001, open_commission=0.0003, close_commission=0.0005, close_today_commission=0, min_commission=5) # 取指标数据 self.ma5 = self.indicator.get_indicator('ma5') self.ma10 = self.indicator.get_indicator('ma10') self.now = time.time() def handle_bar(self, event): print('self.time_tag', self.time_tag, datetime.now(), (time.time() - self.now) * 1000) print(len(Environment.bar_position_data_list)) # 取当前bar的持仓情况 with Timer(True): available_position_dict = {} for position in Environment.bar_position_data_list: available_position_dict[ position.instrument + '.' + position.exchange] = position.position - position.frozen index_member_list = self.index_member_obj.get_index_member_in_date( self.time_tag) close_price_all = self.data_class.get_market_data( Environment.daily_data, stock_code=index_member_list, field=['close'], start=self.time_tag, end=self.time_tag) # 循环遍历股票池 for stock in index_member_list: # 取当前股票的收盘价 close_price = close_price_all['close'][stock] # print(close_price, type(close_price)) # close_array = np.array(close_price) if close_price: # if len(close_array) > 0: # # 利用talib计算MA # try: # ma5 = talib.MA(close_array[-20:], timeperiod=5) # ma20 = talib.MA(close_array[-20:], timeperiod=20) # except Exception as e: # continue # print('ma5', ma5[-1], ma20[-1], ma5[-1] > ma20[-1], len(available_position_dict.keys())) # 过滤因为停牌没有数据 # if self.time_tag in close_price.index: # print("qqqqqq", type(self.ma5), self.ma5) ma5 = self.ma5[stock][self.time_tag] ma20 = self.ma10[stock][self.time_tag] if ma5 and ma20: # 如果5日均线突破20日均线,并且没有持仓,则买入这只股票100股,以收盘价为指定价交易 if ma5 > ma20 and stock not in available_position_dict.keys( ) and stock in index_member_list: Trade(self).order_shares(stock_code=stock, shares=100, price_type='fix', order_price=close_price, account=self.account[0]) print('buy', stock, -1, 'fix', close_price, self.account) # 如果20日均线突破5日均线,并且有持仓,则卖出这只股票100股,以收盘价为指定价交易 elif ma5 < ma20 and stock in available_position_dict.keys( ): Trade(self).order_shares(stock_code=stock, shares=-100, price_type='fix', order_price=close_price, account=self.account[0]) print('sell', stock, -1, 'fix', close_price, self.account) for stock in available_position_dict.keys(): if stock not in index_member_list: Trade(self).order_shares(stock_code=stock, shares=-100, price_type='fix', order_price=close_price, account=self.account[0]) print('sell not in index_member_list', stock, -1, 'fix', close_price, self.account) self.now = time.time()