コード例 #1
0
    def test_MAPE_RetunedValue_TypeFloatEqualValue(self):
        # Arrange
        y = [i+1 for i in range(self.NumData)]
        y_pred = y
        y_fake_pred = [-i for i in y_pred]

        # Act
        mapeVal = Forecast.MAPE(y, y_pred)
        mapeValWithBadValues = Forecast.MAPE(y, y_fake_pred)

        # Assert
        self.assertIsInstance(mapeVal, float)
        self.assertIsInstance(mapeValWithBadValues, float)
        self.assertEqual(mapeVal, 0)
        self.assertEqual(mapeValWithBadValues, 2)
コード例 #2
0
def ForecastValue(factors, value, method):
    train_factors = [y for y in factors[0:len(value)]]
    train_value = [y for y in value[0:len(value)]]
    test_factors = [y for y in factors[len(value):]]

    if method == "RF":
        forecastModel = Forecast.RandomForecast(train_factors, train_value)
        return list(forecastModel.predict(train_factors)), list(
            forecastModel.predict(test_factors))
    elif method == "LR":
        forecastModel = Forecast.LinearRegression(train_factors, train_value)
        return list(forecastModel.predict(train_factors)), list(
            forecastModel.predict(test_factors))
    else:
        result = Forecast.NeuralNetwork(train_factors, train_value)
        result += Forecast.NeuralNetwork(test_factors, train_value)
        return result
コード例 #3
0
    def test_LinearRegression_RetunedValueType_SklearnLinearRegression(self):
        # Arrange

        # Act
        model = Forecast.LinearRegression(self.x, self.y)

        # Assert
        self.assertIsInstance(model, LinearRegression)
コード例 #4
0
    def test_NeuralNetwork_RetunedValueTypeAndLength_TypeListAndLengthEqualSelfX(self):
        # Arrange

        # Act
        model = Forecast.NeuralNetwork(self.x, self.y)

        # Assert
        self.assertIsInstance(model, list)
        self.assertEqual(len(model), len(self.x))
コード例 #5
0
    def test_RandomForecast_RetunedValueType_SklearnRandomForestRegressor(self):
        # Arrange
        x = self.x.reshape(1, -1)
        y = self.y.reshape(1, -1)
        # Act
        model = Forecast.RandomForecast(x, y)

        # Assert
        self.assertIsInstance(model, RandomForestRegressor)
コード例 #6
0
    def test_SVC_RetunedValueType_SklearnSVR(self):
        # Arrange
        x = self.x
        y = self.y.reshape(-1)

        # Act
        model = Forecast.SVC(x, y)

        # Assert
        self.assertIsInstance(model, SVR)
コード例 #7
0
def Predict(request: HttpRequest):
    dateTime = datetime.utcnow()
    # Засекаем время начала обработки запроса
    start_time = time.clock()
    # Засекаем как сильно загрузился процессор во время обработки заброса
    psutil.cpu_percent(interval=None, percpu=True)
    try:
        data = []
        if len(request.FILES) == 1:
            # Имя обрабатываемого файла можно найти как request.FILES['file']
            for key in request.FILES:
                csvfile = GetFile(key, request.FILES[key].file,
                                  request.encoding)
                data = handle_files(csvfile.filecontent)
        else:
            return HttpResponseServerError("<h2>No file</h2>")

        try:
            date = [y[0] for y in data]

            revenue = [float(y[1]) for y in data if (y[1] is not "")]
            crop = [float(y[2]) for y in data if (y[2] is not "")]
            temp = [float(y[3]) for y in data if (y[3] is not "")]
            rain = [float(y[4]) for y in data if (y[4] is not "")]
            cost = [float(y[5]) for y in data if (y[5] is not "")]

        except Exception as e:
            return HttpResponseServerError("<h2>Wrong file: " + str(e) +
                                           "</h2>")

        crop_forecast_rf = CropForecast(crop, temp, rain, "RF")
        cost_forecast_rf = CostForecast(cost,
                                        crop + crop_forecast_rf[len(crop):],
                                        temp, rain, "RF")
        revenue_forecast_train_rf, revenue_forecast_test_rf = RevenueForecast(
            revenue, cost + cost_forecast_rf[len(cost):],
            crop + crop_forecast_rf[len(crop):], temp, rain, "RF")

        rf_rmse = Forecast.RMSE(revenue,
                                (revenue_forecast_train_rf +
                                 revenue_forecast_test_rf)[0:len(revenue)])
        rf_mae = Forecast.MAE(revenue,
                              (revenue_forecast_train_rf +
                               revenue_forecast_test_rf)[0:len(revenue)])
        rf_mape = Forecast.MAPE(revenue,
                                (revenue_forecast_train_rf +
                                 revenue_forecast_test_rf)[0:len(revenue)])

        crop_forecast_lr = CropForecast(crop, temp, rain, "LR")
        cost_forecast_lr = CostForecast(cost,
                                        crop + crop_forecast_lr[len(crop):],
                                        temp, rain, "LR")
        revenue_forecast_train_lr, revenue_forecast_test_lr = RevenueForecast(
            revenue, cost + cost_forecast_lr[len(cost):],
            crop + crop_forecast_lr[len(crop):], temp, rain, "LR")
        lr_rmse = Forecast.RMSE(revenue,
                                (revenue_forecast_train_lr +
                                 revenue_forecast_test_lr)[0:len(revenue)])
        lr_mae = Forecast.MAE(revenue,
                              (revenue_forecast_train_lr +
                               revenue_forecast_test_lr)[0:len(revenue)])
        lr_mape = Forecast.MAPE(revenue,
                                (revenue_forecast_train_lr +
                                 revenue_forecast_test_lr)[0:len(revenue)])

        # crop_forecast_net = CropForecast(crop, temp, rain, "NET")
        # cost_forecast_net = CostForecast(cost, crop + crop_forecast_net[len(crop):], temp, rain, "NET")
        # revenue_forecast_train_net, revenue_forecast_test_net = RevenueForecast(revenue,
        #                                                                       cost + cost_forecast_net[len(cost):],
        #                                                                       crop + crop_forecast_net[len(crop):], temp,
        #                                                                       rain,
        #                                                                       "NET")
        # net_rmse = Forecast.RMSE(revenue, (revenue_forecast_train_net + revenue_forecast_test_net)[0:len(revenue)])
        # net_mae = Forecast.MAE(revenue, (revenue_forecast_train_net + revenue_forecast_test_net)[0:len(revenue)])
        # net_mape = Forecast.MAPE(revenue, (revenue_forecast_train_net + revenue_forecast_test_net)[0:len(revenue)])

        # print("rf_rmse: ", str(rf_rmse))
        # print("rf_mae: ", str(rf_mae))
        # print("rf_mape: ", str(rf_mape))
        #
        # print("lr_rmse: ", str(lr_rmse))
        # print("lr_mae: ", str(lr_mae))
        # print("lr_mape: ", str(lr_mape))

        # print("net_rmse: ", str(net_rmse))
        # print("net_mae: ", str(net_mae))
        # print("net_mape: ", str(net_mape))

        response = {
            'date': [y for y in date],
            'revenue': {
                'fact': [y for y in revenue],
                'forecast': [
                    y for y in revenue_forecast_train_rf +
                    revenue_forecast_test_rf
                ],
                'RMSE': [rf_rmse],
                'MAE': [rf_mae],
                'MAPE': [rf_mape]
            },
            'crop': {
                'fact': [y for y in crop],
                'forecast': [y for y in crop_forecast_rf]
            },
            'cost': {
                'fact': [y for y in cost],
                'forecast': [y for y in cost_forecast_rf]
            },
            'temp': [y for y in temp],
            'rain': [y for y in rain]
        }
        # Засекаем время конца обработки запроса
        end_time = time.clock()
        # h - данные о количестве используемой памяти в программе
        # h = hpy()
        # memory_data = h.heap()
        # Через регулярку вытаскиваю сколько в байтах памяти занимает программа
        # res = re.search('size = (.*) bytes', str(memory_data))
        memory_usage = 123  # res.group(1)
        # Нахожу сколько весит массив с данными (по идее столько же сколько файл)
        data_size = sys.getsizeof(data)
        # Как сильно был загружен процессор с момента последнего запроса команды
        cpu_percent = psutil.cpu_percent(interval=None, percpu=False)

        # Логирую в файл данные для дальнейшей обработки
        file = open("log.txt", "a")
        file.write(
            make_scv_str(data, memory_usage, end_time - start_time,
                         cpu_percent))
        monitoring = {
            'cpu': cpu_percent,
            'memory': memory_usage,
            'time': end_time - start_time
        }
        file.close()

        empty_response = {
            'metrics': {
                'RMSE': [rf_rmse],
                'MAE': [rf_mae],
                'MAPE': [rf_mape]
            }
        }
        SaveToDB(empty_response['metrics'], dateTime, csvfile, monitoring)
        return HttpResponse(json.dumps(empty_response))
    except Exception as e:
        return HttpResponseServerError("<h2>An error occured " + str(e) +
                                       "</h2>")