def __init__(self, args): super(cnn_TR2, self).__init__() self.cnn_1 = cnn() self.cnn_2 = cnn() self.tr_1 = TR(args, (24, 8, 8), 64) self.tr_2 = TR(args, (24, 8, 8), 64) self.final = nn.Sequential(nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 2))
def __init__(self, args): super(cnn_test2, self).__init__() self.cnn_1 = cnn() self.cnn_2 = cnn() self.tr_1 = TR(args, (24, 8, 8), 64) self.sf_1 = SF(args, (24, 8, 8), 64) self.tr_2 = TR(args, (24, 8, 8), 64) self.sf_2 = SF(args, (24, 8, 8), 64) self.af_1 = nn.Sequential(nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU()) self.af_2 = nn.Sequential(nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 64), nn.ReLU()) self.final = nn.Sequential(nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Dropout(p=0.1), nn.Linear(32, 2))
def __init__(self, args, fourier): super(res_TR, self).__init__() self.conv = transfer_img(fourier) self.resnet = resnet50_F() self.cnn_c = cnn_C() self.tr = TR(args, (24, 8, 8), 2)
def __init__(self, args): super(cnn_test, self).__init__() self.cnn = cnn() self.tr = TR(args, (24, 8, 8), 64) self.sf = SF(args, (24, 8, 8), 64) self.final = nn.Sequential(nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 2))
def __init__(self, args, fourier): super(res_test, self).__init__() self.conv = transfer_img(fourier) self.resnet = resnet50_F() self.tr = TR(args, (24, 8, 8), 64) self.sf = SF(args, (24, 8, 8), 64) self.cnn_c = cnn_C() self.final = nn.Sequential(nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 2))
def __init__(self, args): super(res_TR, self).__init__() self.resnet = resnet50() self.tr = TR(args, (24, 8, 8), 2)